Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5186, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057603

RESUMO

Ruthenium (Ru) is the one of the most promising catalysts for polyolefin hydrogenolysis. Its performance varies widely with the support, but the reasons remain unknown. Here, we introduce a simple synthetic strategy (using ammonia as a modulator) to tune metal-support interactions and apply it to Ru deposited on titania (TiO2). We demonstrate that combining deuterium nuclear magnetic resonance spectroscopy with temperature variation and density functional theory can reveal the complex nature, binding strength, and H amount. H2 activation occurs heterolytically, leading to a hydride on Ru, an H+ on the nearest oxygen, and a partially positively charged Ru. This leads to partial reduction of TiO2 and high coverages of H for spillover, showcasing a threefold increase in hydrogenolysis rates. This result points to the key role of the surface hydrogen coverage in improving hydrogenolysis catalyst performance.

2.
Nat Commun ; 13(1): 832, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149699

RESUMO

Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are difficult to decipher. A prototypical example is the hydrogen-deuterium exchange reaction catalyzed by dilute Pd-in-Au alloy nanoparticles. From a combination of catalytic activity measurements, machine learning-enabled spectroscopic analysis, and first-principles based kinetic modeling, we demonstrate that the active species are surface Pd ensembles containing only a few (from 1 to 3) Pd atoms. These species simultaneously explain the observed X-ray spectra and equate the experimental and theoretical values of the apparent activation energy. Remarkably, we find that the catalytic activity can be tuned on demand by controlling the size of the Pd ensembles through catalyst pretreatment. Our data-driven multimodal approach enables decoding of reactive structures in complex and dynamic alloy catalysts.

3.
JACS Au ; 2(1): 214-222, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35098238

RESUMO

The electrochemical carbon dioxide reduction reaction (CO2RR) using copper (Cu)-based catalysts has received significant attention mainly because Cu is an element capable of producing hydrocarbons and oxygenates. One possible way to control the CO2RR performance at the electrode interface is by modifying catalysts with specific functional groups of different polymeric binders, which are necessary components in the process of electrode fabrication. However, the modification effect of the key functional groups on the CO2RR activity and selectivity is poorly understood over Cu-based catalysts. In this work, the role of functional groups (e.g., -COOH and -CF2 groups) in hydrophilic and hydrophobic polymeric binders on the CO2RR of Cu-based catalysts is investigated using a combination of electrochemical measurements, in situ characterization, and density functional theory (DFT) calculations. DFT results reveal that functional groups influence the binding energies of key intermediates involved in both CO2RR and the competing hydrogen evolution reaction, consistent with experimental observation of binder-dependent product distributions among formic acid, CO, CH4, and H2. This study provides a fundamental understanding that the selection of desired polymeric binders is a useful strategy for tuning the CO2RR activity and selectivity.

4.
Nat Commun ; 10(1): 3724, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427576

RESUMO

The electrochemical carbon dioxide reduction reaction to syngas with controlled CO/H2 ratios has been studied on Pd-based bimetallic hydrides using a combination of in situ characterization and density functional theory calculations. When compared with pure Pd hydride, the bimetallic Pd hydride formation occurs at more negative potentials for Pd-Ag, Pd-Cu, and Pd-Ni. Theoretical calculations show that the choice of the second metal has a more significant effect on the adsorption strength of *H than *HOCO, with the free energies between these two key intermediates (i.e., ΔG(*H)-ΔG(*HOCO)) correlating well with the carbon dioxide reduction reaction activity and selectivity observed in the experiments, and thus can be used as a descriptor to search for other bimetallic catalysts. The results also demonstrate the possibility of alloying Pd with non-precious transition metals to promote the electrochemical conversion of CO2 to syngas.

5.
Top Curr Chem (Cham) ; 377(3): 11, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30949779

RESUMO

Despite its attractive features as a power source for direct alcohol fuel cells, utilization of ethanol is still hampered by both fundamental and technical challenges. The rationale behind the slow and incomplete ethanol oxidation reaction (EOR) with low selectivity towards CO2 on most Pt-based catalysts is still far from being understood, and a number of practical problems need to be addressed before an efficient and low-cost catalyst is designed. Some recent achievements towards solving these problems are presented. Pt film electrodes and Pt monolayer (PtML) electrodes on various single crystal substrates showed that EOR follows the partial oxidation pathway without C-C bond cleavage, with acetic acid and acetaldehyde as the final products. The role of the substrate lattice on the catalytic properties of PtML was proven by the choice of appropriate M(111) structure (M = Pd, Ir, Rh, Ru and Au) showing enhanced kinetics when PtML is under tensile strain on Au(111) electrode. Nanostructured electrocatalysts containing Pt-Rh solid solution on SnO2 and Pt monolayer on non-noble metals are shown, optimized, and characterized by in situ methods. Electrochemical, in situ Fourier transform infrared (FTIR) and X-ray absorption spectroscopy (XAS) techniques highlighted the effect of Rh in facilitating C-C bond splitting in the ternary PtRh/SnO2 catalyst. In situ FTIR proved quantitatively the enhancement in the total oxidation pathway to CO2, and in situ XAS confirmed that Pt and Rh form a solid solution that remains in metallic form through a wide range of potentials due to the presence of SnO2. Combination of these findings with density functional theory calculations revealed the EOR reaction pathway and the role of each constituent of the ternary PtRh/SnO2 catalyst. The optimal Pt:Rh:Sn atomic ratio was found by the two in situ techniques. Attempts to replace Rh with cost-effective alternatives for commercially viable catalysts has shown that Ir can also split the C-C bond in ethanol, but the performance of optimized Pt-Rh-SnO2 is still higher than that of the Pt-Ir-SnO2 catalyst.


Assuntos
Técnicas Eletroquímicas , Etanol/química , Platina/química , Acetaldeído/síntese química , Acetaldeído/química , Ácido Acético/síntese química , Ácido Acético/química , Catálise , Oxirredução
6.
Sci Rep ; 7(1): 773, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28396583

RESUMO

Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs8[Nb6O19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb6O19]8- polyanion, its Cs+ counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general base (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs8[Nb6O19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.

7.
Nat Chem ; 9(2): 120-127, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28282057

RESUMO

The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal-support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCOx) on reducible oxide supports (TiO2 and Nb2O5) that induce oxygen-vacancy formation in the support and cause HCOx-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO2-reduction selectivity.

8.
J Am Chem Soc ; 135(10): 3997-4006, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23432136

RESUMO

5-(Hydroxymethyl)furfural (HMF) and levulinic acid production from glucose in a cascade of reactions using a Lewis acid (CrCl3) catalyst together with a Brønsted acid (HCl) catalyst in aqueous media is investigated. It is shown that CrCl3 is an active Lewis acid catalyst in glucose isomerization to fructose, and the combined Lewis and Brønsted acid catalysts perform the isomerization and dehydration/rehydration reactions. A CrCl3 speciation model in conjunction with kinetics results indicates that the hydrolyzed Cr(III) complex [Cr(H2O)5OH](2+) is the most active Cr species in glucose isomerization and probably acts as a Lewis acid-Brønsted base bifunctional site. Extended X-ray absorption fine structure spectroscopy and Car-Parrinello molecular dynamics simulations indicate a strong interaction between the Cr cation and the glucose molecule whereby some water molecules are displaced from the first coordination sphere of Cr by the glucose to enable ring-opening and isomerization of glucose. Additionally, complex interactions between the two catalysts are revealed: Brønsted acidity retards aldose-to-ketose isomerization by decreasing the equilibrium concentration of [Cr(H2O)5OH](2+). In contrast, Lewis acidity increases the overall rate of consumption of fructose and HMF compared to Brønsted acid catalysis by promoting side reactions. Even in the absence of HCl, hydrolysis of Cr(III) decreases the solution pH, and this intrinsic Brønsted acidity drives the dehydration and rehydration reactions. Yields of 46% levulinic acid in a single phase and 59% HMF in a biphasic system have been achieved at moderate temperatures by combining CrCl3 and HCl.


Assuntos
Ácidos/química , Frutose/química , Furaldeído/análogos & derivados , Glucose/química , Ácidos Levulínicos/síntese química , Catálise , Furaldeído/síntese química , Furaldeído/química , Ácidos Levulínicos/química , Simulação de Dinâmica Molecular , Água/química
9.
J Am Chem Soc ; 135(1): 132-41, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23210450

RESUMO

Splitting the C-C bond is the main obstacle to electrooxidation of ethanol (EOR) to CO(2). We recently demonstrated that the ternary PtRhSnO(2) electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article, we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We characterized and compared the properties of several carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO(2) NP core decorated with multimetallic nanoislands (MM' = PtIr, PtRh, IrRh, PtIrRh) prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM'/SnO(2) NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity toward CO(2) formation of several of these MM'/SnO(2)/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO(2)/C catalysts. We demonstrate that the PtIr/SnO(2)/C catalyst with high Ir content shows outstanding catalytic properties with the most negative EOR onset potential and reasonably good selectivity toward ethanol complete oxidation to CO(2).


Assuntos
Dióxido de Carbono/síntese química , Etanol/química , Dióxido de Carbono/química , Catálise , Técnicas Eletroquímicas , Oxirredução
10.
ACS Nano ; 6(6): 5583-95, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22575058

RESUMO

We describe the results of an X-ray absorption spectroscopy (XAS) study of adsorbate and temperature-dependent alterations of the atomic level structure of a prototypical, noble metal hydrogenation and reforming catalyst: ∼1.0 nm Pt clusters supported on gamma alumina (Pt/γ-Al(2)O(3)). This work demonstrates that the metal-metal (M-M) bonding in these small clusters is responsive to the presence of adsorbates, exhibiting pronounced coverage-dependent strains in the clusters' M-M bonding, with concomitant modifications of their electronic structures. Hydrogen and CO adsorbates demonstrate coverage-dependent bonding that leads to relaxation of the M-M bond strains within the clusters. These influences are partially compensated, and variably mediated, by the temperature-dependent electronic perturbations that arise from cluster-support and adsorbate-support interactions. Taken together, the data reveal a strikingly fluxional system with implications for understanding the energetics of catalysis. We estimate that a 9.1 ± 1.1 kJ/mol strain exists for these clusters under H(2) and that this strain increases to 12.8 ± 1.7 kJ/mol under CO. This change in the energy of the particle is in addition to the different heats of adsorption for each gas (64 ± 3 and 126 ± 2 kJ/mol for H(2) and CO, respectively).


Assuntos
Óxido de Alumínio/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Platina/química , Absorção , Catálise , Teste de Materiais , Estresse Mecânico , Temperatura
11.
J Am Chem Soc ; 134(1): 197-200, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22188603

RESUMO

An in situ electrochemical X-ray absorption spectroscopy (XAS) cell has been fabricated that enables high oxygen flux to the working electrode by utilizing a thin poly(dimethylsiloxane) (PDMS) window. This cell design enables in situ XAS investigations of the oxygen reduction reaction (ORR) at high operating current densities greater than 1 mA in an oxygen-purged environment. When the cell was used to study the ORR for a Pt on carbon electrocatalyst, the data revealed a progressive evolution of the electronic structure of the metal clusters that is both potential-dependent and strongly current-dependent. The trends establish a direct correlation to d-state occupancies that directly tracks the character of the Pt-O bonding present.

12.
J Synchrotron Radiat ; 18(Pt 3): 447-55, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21525654

RESUMO

A new instrument for synchronous in situ investigations of catalytic materials by IR and X-ray absorption spectroscopies was designed and built at the X18A beamline of the National Synchrotron Light Source of Brookhaven National Laboratory. It provides analytical tools for solving structural, electronic and kinetic problems in catalysis science by two complementary methods. Among the features attractive for catalysis research are the broad range of catalytically active elements that can be investigated (starting with Ni and beyond), the wide range of reaction conditions (temperatures up to 873 K, various reactive gases) and time scales (starting from tens of seconds). The results of several representative experiments that illustrate the attractive capabilities of the new set-up are discussed.

13.
J Agric Food Chem ; 51(20): 6062-7, 2003 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-13129317

RESUMO

Synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIR) is an advanced bioanalytical technique capable of exploring the chemistry within microstructures of plant and animal tissues with a high signal to noise ratio at high ultraspatial resolutions (3-10 microm) without destruction of the intrinsic structures of a tissue. This technique is able to provide information relating to the quantity, composition, structure, and distribution of chemical constituents and functional groups in a tissue. The objective of this study was to illustrate how the SR-FTIR technique can be used to image inherent structures of plant tissues on a cellular level (pixel size, approximately 10 microm x 10 microm). The results showed that with the extremely bright synchrotron light, spectra with high signal to noise ratios were obtained from areas as small as 10 microm x 10 microm in the plant tissue, which allowed us to "see" plant tissue in a chemical sense on a cellular level. The ultraspatial resolved imaging of plant tissues by stepping in pixel-sized increments was obtained. Chemical distributions of plant tissues such as lignin, cellulose, protein, lipid, and total carbohydrate could be mapped. These images revealed the chemical information of plant intrinsic structure. In conclusion, SR-FTIR can provide chemical and functional characteristics of plant tissue at high ultraspatial resolutions. The SR-FTIR microspectroscopic images can generate spatially localized functional group and chemical information within cellular dimensions.


Assuntos
Plantas/química , Plantas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Hordeum/química , Hordeum/ultraestrutura , Sementes/química , Sementes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...