Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(6): 5163-5186, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926849

RESUMO

The growing interest in the development of next-generation net zero energy systems has led to the expansion of molybdenum disulfide (MoS2) research in this area. This activity has resulted in a wide range of manufacturing/synthesis methods, controllable morphologies, diverse carbonaceous composite structures, a multitude of applicable characterization techniques, and multiple energy applications for MoS2. To assess the literature trends, 37,347 MoS2 research articles from Web of Science were text scanned to classify articles according to energy application research and characterization techniques employed. Within the review, characterization techniques are grouped under the following categories: morphology, crystal structure, composition, and chemistry. The most common characterization techniques identified through text scanning are recommended as the base fingerprint for MoS2 samples. These include: scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Similarly, XPS and Raman spectroscopy are suggested for 2H or 1T MoS2 phase confirmation. We provide guidance on the collection and presentation of MoS2 characterization data. This includes how to effectively combine multiple characterization techniques, considering the sample area probed by each technique and their statistical significance, and the benefit of using reference samples. For ease of access for future experimental comparison, key numeric MoS2 characterization values are tabulated and major literature discrepancies or currently debated characterization disputes are highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA