Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(4): e0282877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011053

RESUMO

We investigate the water sources for a perennial spring, "Little Black Pond," located at Expedition Fiord, Axel Heiberg Island in the Canadian High Arctic based on dissolved gases. We measured the dissolved O2 in the likely sources Phantom Lake and Astro Lake and the composition of noble gases (3He/4He, 4He, Ne,36Ar, 40Ar, Kr, Xe), N2, O2, CO2, H2S, CH4, and tritium dissolved in the outflow water and bubbles emanating from the spring. The spring is associated with gypsum-anhydrite piercement structures and occurs in a region of thick, continuous permafrost (400-600 m). The water columns in Phantom and Astro lakes are uniform and saturated with O2. The high salinity of the water emanating from the spring, about twice sea water, affects the gas solubility. Oxygen in the water and bubbles is below the detection limit. The N2/Ar ratio in the bubbles and the salty water is 89.9 and 40, respectively, and the relative ratios of the noble gases, with the exception of Neon, are consistent with air dissolved in lake water mixed with air trapped in glacier bubbles as the source of the gases. The Ne/Ar ratio is ~62% of the air value. Our results indicate that about half (0.47±0.1) of the spring water derives from the lakes and the other half from subglacial melt. The tritium and helium results indicate that the groundwater residence time is over 70 years and could be thousands of years.


Assuntos
Gases Nobres , Água , Trítio , Canadá , Hélio , Oxigênio/análise , Lagos
2.
New Space ; 10(3): 259-273, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36199953

RESUMO

A main goal of human space exploration is to develop humanity into a multi-planet species where civilization extends beyond planet Earth. Establishing a self-sustaining human presence on Mars is key to achieving this goal. In situ resource utilization (ISRU) on Mars is a critical component to enabling humans on Mars to both establish long-term outposts and become self-reliant. This article focuses on a mission architecture using the SpaceX Starship as cargo and crew vehicles for the journey to Mars. The first Starships flown to Mars will be uncrewed and will provide unprecedented opportunities to deliver ∼100 metric tons of cargo to the martian surface per mission and conduct robotic precursor work to enable a sustained and self-reliant human presence on Mars. We propose that the highest priority activities for early uncrewed Starships include pre-placement of supplies, developing infrastructure, testing of key technologies, and conducting resource prospecting to map and characterize water ice for future ISRU purposes.

3.
ISME J ; 10(7): 1613-24, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27323892

RESUMO

Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature -23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival.


Assuntos
Pergelissolo/microbiologia , Microbiologia do Solo , Regiões Antárticas , Regiões Árticas , Temperatura Baixa , Dessecação , Ecossistema , Geografia
4.
Astrobiology ; 13(4): 334-53, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23560417

RESUMO

The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, ≈ 5 Myr ago. Carbon dioxide and nitrogen are present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: (1) Search for specific biomolecules that would be conclusive evidence of life. (2) Perform a general search for organic molecules in the ground ice. (3) Determine the processes of ground ice formation and the role of liquid water. (4) Understand the mechanical properties of the martian polar ice-cemented soil. (5) Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. (6) Compare the elemental composition of the northern plains with midlatitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at midlatitudes. Duplicate samples could be cached as a target for possible return by a Mars Sample Return mission. If the samples were shown to contain organic biomarkers, interest in returning them to Earth would be high.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno/química , Gelo , Vida , Marte , Percloratos/química , Solo/química , Exobiologia/instrumentação , Percloratos/toxicidade , Estados Unidos , United States National Aeronautics and Space Administration , Água/química
5.
Nature ; 453(7199): 1216-9, 2008 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-18580945

RESUMO

The Mars hemispheric dichotomy is expressed as a dramatic difference in elevation, crustal thickness and crater density between the southern highlands and northern lowlands (which cover approximately 42% of the surface). Despite the prominence of the dichotomy, its origin has remained enigmatic and models for its formation largely untested. Endogenic degree-1 convection models with north-south asymmetry are incomplete in that they are restricted to simulating only mantle dynamics and they neglect crustal evolution, whereas exogenic multiple impact events are statistically unlikely to concentrate in one hemisphere. A single mega-impact of the requisite size has not previously been modelled. However, it has been hypothesized that such an event could obliterate the evidence of its occurrence by completely covering the surface with melt or catastrophically disrupting the planet. Here we present a set of single-impact initial conditions by which a large impactor can produce features consistent with the observed dichotomy's crustal structure and persistence. Using three-dimensional hydrodynamic simulations, large variations are predicted in post-impact states depending on impact energy, velocity and, importantly, impact angle, with trends more pronounced or unseen in commonly studied smaller impacts. For impact energies of approximately (3-6) x 10(29) J, at low impact velocities (6-10 km s(-1)) and oblique impact angles (30-60 degrees ), the resulting crustal removal boundary is similar in size and ellipticity to the observed characteristics of the lowlands basin. Under these conditions, the melt distribution is largely contained within the area of impact and thus does not erase the evidence of the impact's occurrence. The antiquity of the dichotomy is consistent with the contemporaneous presence of impactors of diameter 1,600-2,700 km in Mars-crossing orbits, and the impact angle is consistent with the expected distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...