Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(23): eadn6056, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838149

RESUMO

Extensive ice coverage largely prevents investigations of Antarctica's unglaciated past. Knowledge about environmental and tectonic development before large-scale glaciation, however, is important for understanding the transition into the modern icehouse world. We report geochronological and sedimentological data from a drill core from the Amundsen Sea shelf, providing insights into tectonic and topographic conditions during the Eocene (~44 to 34 million years ago), shortly before major ice sheet buildup. Our findings reveal the Eocene as a transition period from >40 million years of relative tectonic quiescence toward reactivation of the West Antarctic Rift System, coinciding with incipient volcanism, rise of the Transantarctic Mountains, and renewed sedimentation under temperate climate conditions. The recovered sediments were deposited in a coastal-estuarine swamp environment at the outlet of a >1500-km-long transcontinental river system, draining from the rising Transantarctic Mountains into the Amundsen Sea. Much of West Antarctica hence lied above sea level, but low topographic relief combined with low elevation inhibited widespread ice sheet formation.

2.
Int J Min Sci Technol ; 31(1): 117-126, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37180764

RESUMO

Many states rely upon the Pennsylvania 1957 Gas Well Pillar Study to evaluate the coal barrier surrounding gas wells. The study included 77 gas well failure cases that occurred in the Pittsburgh and Freeport coal seams over a 25-year span. At the time, coal was mined using the room-and-pillar mining method with full or partial pillar recovery, and square or rectangle pillars surrounding the gas wells were left to protect the wells. The study provided guidelines for pillar sizes under different overburden depths up to 213 m (700 ft). The 1957 study has also been used to determine gas well pillar sizes in longwall mines since longwall mining began in the 1970 s. The original study was developed for room-and-pillar mining and could be applied to gas wells in longwall chain pillars under shallow cover. However, under deep cover, severe deformations in gas wells have occurred in longwall chain pillars. Presently, with a better understanding of coal pillar mechanics, new insight into subsidence movements induced by retreat mining, and advances in numerical modeling, it has become both critically important and feasible to evaluate the adequacy of the 1957 study for longwall gas well pillars. In this paper, the data from the 1957 study is analyzed from a new perspective by considering various factors, including overburden depth, failure location, failure time, pillar safety factor (SF), and floor pressure. The pillar SF and floor pressure are calculated by considering abutment pressure induced by full pillar recovery. A statistical analysis is performed to find correlations between various factors and helps identify the most significant factors for the stability of gas wells influenced by retreat mining. Through analyzing the data from the 1957 study, the guidelines for gas well pillars in the 1957 study are evaluated for their adequacy for room-and-pillar mining and their applicability to longwall mining. Numerical modeling is used to model the stability of gas wells by quantifying the mining-induced stresses in gas well casings. Results of this study indicate that the guidelines in the 1957 study may be appropriate for pillars protecting conventional gas wells in both room-and-pillar mining and longwall mining under overburden depths up to 213 m (700 ft), but may not be sufficient for protective pillars under deep cover. The current evaluation of the 1957 study provides not only insights about potential gas well failures caused by retreat mining but also implications for what critical considerations should be taken into account to protect gas wells in longwall mining.

3.
Nature ; 580(7801): 81-86, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238944

RESUMO

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1-5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether polar ice could exist under such environmental conditions. Here we use a sedimentary sequence recovered from the West Antarctic shelf-the southernmost Cretaceous record reported so far-and show that a temperate lowland rainforest environment existed at a palaeolatitude of about 82° S during the Turonian-Santonian age (92 to 83 million years ago). This record contains an intact 3-metre-long network of in situ fossil roots embedded in a mudstone matrix containing diverse pollen and spores. A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric carbon dioxide concentrations of 1,120-1,680 parts per million by volume and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo under high levels of atmospheric carbon dioxide.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/história , Clima , Floresta Úmida , Temperatura , Regiões Antárticas , Fósseis , Sedimentos Geológicos/química , História Antiga , Modelos Teóricos , Nova Zelândia , Pólen , Esporos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...