Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 176063, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245389

RESUMO

Microplastic pollution (MP) has become a major global environmental issue, negatively impacting terrestrial and aquatic ecosystems as well as human health. Tackling this complex problem necessitates a multidisciplinary approach and collaboration among diverse stakeholders. Within this context, the Quintuple Helix framework, which highlights the involvement of academia, government, industry, civil society, and the environment, provides a comprehensive and inclusive perspective for formulating effective policies to manage atmospheric microplastics. This paper discusses each helix's roles, challenges, and opportunities and proposes strategies for collaboration and knowledge exchange among them. Furthermore, the paper highlights the importance of interdisciplinary research, innovative technologies, public awareness campaigns, regulatory frameworks, and corporate responsibility in achieving sustainable and resilient microplastic management policies. The Quintuple Helix approach can mitigate MP, safeguard ecosystems, and preserve planetary health by fostering collaboration and coordination among diverse stakeholders.

2.
Environ Res ; 236(Pt 1): 116646, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481054

RESUMO

The mutating SARS-CoV-2 necessitates gauging the role of airborne particulate matter in the COVID-19 outbreak for designing area-specific regulation modalities based on the environmental state-of-affair. To scheme the protocols, the hotspots of air pollutants such as PM2.5, PM10, NH3, NO, NO2, SO2, and and environmental factors including relative humidity (RH), and temperature, along with COVID-19 cases and mortality from January 2020 till December 2020 from 29 different ground monitoring stations spanning Delhi, are mapped. Spearman correlation coefficients show a positive relationship between SARS-COV-2 with particulate matter (PM2.5 with r > 0.36 and PM10 with r > 0.31 and p-value <0·001). Besides, SARS-COV-2 transmission showed a substantial correlation with NH3 (r = 0.41), NO2 (r = 0.36), and NO (r = 0.35) with a p-value <0.001, which is highly indicative of their role in SARS-CoV-2 transmission. These outcomes are associated with the source of PM and its constituent trace elements to understand their overtone with COVID-19. This strongly validates temporal and spatial variation in COVID-19 dependence on air pollutants as well as on environmental factors. Besides, the bottlenecks of missing latent data, monotonous dependence of variables, and the role air pollutants with secondary environmental variables are discussed. The analysis set the foundation for strategizing regional-based modalities considering environmental variables (i.e., pollutant concentration, relative humidity, temperature) as well as urban and transportation planning for efficient control and handling of future public health emergencies.

3.
Chemosphere ; 324: 138270, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36878370

RESUMO

The emergence of microplastics (MPs) pollution as a global environmental concern has attracted significant attention in the last decade. The majority of the human population spends most of their time indoors, leading to increased exposure to MPs contamination through various sources such as settled dust, air, drinking water and food. Although research on indoor MPs has intensified significantly in recent years, comprehensive reviews on this topic remain limited. Therefore, this review comprehensively analyses the occurrence, distribution, human exposure, potential health impact and mitigation strategies of MPs in the indoor air environment. Specifically, we focus on the risks associated with finer MPs that can translocate into the circulatory system and other organs, emphasizing the need for continued research to develop effective strategies to mitigate the risks associated with MPs exposure. Our findings suggest that indoor MPs impose potential risk to human health, and strategies for mitigating exposure should be further explored.


Assuntos
Poluição do Ar em Ambientes Fechados , Microplásticos , Humanos , Microplásticos/toxicidade , Monitoramento Ambiental , Plásticos/efeitos adversos , Poluição Ambiental/análise , Poeira/análise , Poluição do Ar em Ambientes Fechados/análise
4.
Materials (Basel) ; 15(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36363361

RESUMO

The issue of global warming calls for a greener energy production approach. To this end, bioenergy has significant greenhouse gas mitigation potential, since it makes use of biological products/wastes and can efficiently counter carbon dioxide emission. However, technologies for biomass processing remain limited due to the structure of biomass and difficulties such as high processing cost, development of harmful inhibitors and detoxification of produced inhibitors that hinder widespread usage. Additionally, cellulose pre-treatment is often required to be amenable for an enzymatic hydrolysis process. Nanotechnology (usage of nanomaterials, in this case) has been employed in recent years to improve bioenergy generation, especially in terms of catalyst and feedstock modification. This review starts with introducing the potential nanomaterials in bioenergy generation such as carbon nanotubes, metal oxides, silica and other novel materials. The role of nanotechnology to assist in bioenergy generation is discussed, particularly from the aspects of enzyme immobilization, biogas production and biohydrogen production. Future applications using nanotechnology to assist in bioenergy generation are also prospected.

5.
Biotechnol Genet Eng Rev ; : 1-89, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243900

RESUMO

Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.

6.
Materials (Basel) ; 15(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35057224

RESUMO

Recently, there has been an inclination towards natural fibre reinforced polymer composites owing to their merits such as environmental friendliness, light weight and excellent strength. In the present study, six laminates were fabricated consisting of natural fibres such as Kenaf fibre (Hibiscus cannabinus L.) and Bamboo fibre, together with multi-walled carbon nanotubes (MWCNTs) as reinforcing fillers in the epoxy matrix. Mechanical testing revealed that hybridization of natural fibres was capable of yielding composites with enhanced tensile properties. Additionally, impact testing showed a maximum improvement of ≈80.6% with the inclusion of MWCNTs as nanofiller in the composites with very high energy absorption characteristics, which were attributed to the high specific energy absorption of carbon nanotubes. The viscoelastic behaviour of hybridised composites reinforced with MWCNTs also showed promising results with a significant improvement in the glass transition temperature (Tg) and 41% improvement in storage modulus. It is worth noting that treatment of the fibres in NaOH solution prior to composite fabrication was effective in improving the interfacial bonding with the epoxy matrix, which, in turn, resulted in improved mechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA