Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 943: 173649, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852865

RESUMO

This research builds upon a previous study that explored the potential of the modified WIBS-4+ to selectively differentiate and detect different bioaerosol classes. The current work evaluates the influence of meteorological and air quality parameters on bioaerosol concentrations, specifically pollen and fungal spore dynamics. Temperature was found to be the most influential parameter in terms of pollen production and release, showing a strong positive correlation. Wind data analysis provided insights into the potential geographic origins of pollen and fungal spore concentrations. Fungal spores were primarily shown to originate from a westerly direction, corresponding to agricultural land use, whereas pollen largely originated from a North-easterly direction, corresponding to several forests. The influence of air quality was also analysed to understand its potential impact on the WIBS fluorescent parameters investigated. Most parameters had a negative association with fungal spore concentrations, whereas several anthropogenic influences showed notable positive correlations with daily pollen concentrations. This is attributed to similar driving forces (meteorological parameters) and geographical origins. In addition, the WIBS showed a significant correlation with anthropogenic pollutants originating from combustion sources, suggesting the potential for such modified spectroscopic instruments to be utilized as air quality monitors. By combining all meteorological and pollution data along with WIBS-4+ channel data, a set of Multiple Linear Regression (MLR) analyses were completed. Successful results with R2 values ranging from 0.6 to 0.8 were recorded. The inclusion of meteorological parameters was dependent on the spore or pollen type being examined.


Assuntos
Aerossóis , Poluentes Atmosféricos , Monitoramento Ambiental , Pólen , Esporos Fúngicos , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Microbiologia do Ar , Vento , Análise Espectral/métodos
2.
Sci Total Environ ; 934: 172963, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705300

RESUMO

The prevalence in allergic diseases has increased considerably in the past decades. An important trigger of the symptoms of allergic rhinitis (hay fever) is the pollen of wind-pollinating plants. This pollen is developed by plants and is released into the air where it gets exposed to environmental influences and air pollution. We investigated the chemical changes to pollen that occur after release from the flower in a rural (Veluwe) and an urban (Amsterdam) site in the Netherlands using Fourier Transform Infrared (FTIR) spectroscopy. During the spring/summer of 2020 (during the COVID pandemic) the pollen of nine taxa (Alnus, Betula, Fagus, Fraxinus, Pinus, Plantago, Poaceae, Quercus and Salix) were collected directly from flowers and the air (using a mobile sampler). FTIR spectra were obtained for multiple individual pollen grains for each taxa. The spectra obtained from airborne pollen collected at the rural vs. urban sites did not show any statistical difference. This is possibly a result of a reduced difference in pollutant concentrations between the two sites due to the COVID-19-lockdown measures were in place. However, consistent differences in the FTIR spectra recovered from airborne vs. flower pollen were recorded for all pollen taxa. After the release from the flower the chemical composition of the pollen changed: (i) polysaccharides are converted to monosaccharides; (ii) protein concentration and/or nitration/oxidation level is altered; (iii) lipids are modified and/or reduced in concentration. These changes may alter the allergenicity of the pollen and suggest that further work on the allergenic nature of airborne pollen is required.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Alérgenos , Monitoramento Ambiental , Flores , Pólen , Países Baixos , Alérgenos/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Espectroscopia de Infravermelho com Transformada de Fourier , COVID-19
3.
J Am Soc Mass Spectrom ; 35(3): 421-432, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38326105

RESUMO

Skin volatile emissions offer a noninvasive insight into metabolic activity within the body as well as the skin microbiome and specific volatile compounds have been shown to correlate with age, albeit only in a few small studies. Building on this, here skin volatiles were collected and analyzed in a healthy participant study (n = 60) using a robust headspace-solid phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS) workflow. Following processing, 18 identified compounds were deemed suitable for this study. These were classified according to gender influences and their correlations with age were investigated. Finally, 6 volatiles (of both endogenous and exogenous origin) were identified as significantly changing in abundance with participant age (p < 0.1). The potential origins of these dysregulations are discussed. Multiple linear regression (MLR) analysis was employed to model age based on these significant volatiles as independent variables, along with gender. Our analysis shows that skin volatiles show a strong predictive ability for age (explained variance of 68%), stronger than other biochemical measures collected in this study (skin surface pH, water content) which are understood to vary with chronological age. Overall, this work provides new insights into the impact of aging on the skin volatile profiles which comprises both endogenously and exogenously derived volatile compounds. It goes toward demonstrating the biological significance of skin volatiles and will help pave the way for more rigorous consideration of the healthy "baseline" skin volatile profile in volatilomics-based health diagnostics development going forward.


Assuntos
Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Humanos , Análise Multivariada , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
4.
Sensors (Basel) ; 23(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139506

RESUMO

The rapid expansion of 3D printing technologies has led to increased utilization in various industries and has also become pervasive in the home environment. Although the benefits are well acknowledged, concerns have arisen regarding potential health and safety hazards associated with emissions of volatile organic compounds (VOCs) and particulates during the 3D printing process. The home environment is particularly hazardous given the lack of health and safety awareness of the typical home user. This study aims to assess the safety aspects of 3D printing of PLA and ABS filaments by investigating emissions of VOCs and particulates, characterizing their chemical and physical profiles, and evaluating potential health risks. Gas chromatography-mass spectrometry (GC-MS) was employed to profile VOC emissions, while a particle analyzer (WIBS) was used to quantify and characterize particulate emissions. Our research highlights that 3D printing processes release a wide range of VOCs, including straight and branched alkanes, benzenes, and aldehydes. Emission profiles depend on filament type but also, importantly, the brand of filament. The size, shape, and fluorescent characteristics of particle emissions were characterized for PLA-based printing emissions and found to vary depending on the filament employed. This is the first 3D printing study employing WIBS for particulate characterization, and distinct sizes and shape profiles that differ from other ambient WIBS studies were observed. The findings emphasize the importance of implementing safety measures in all 3D printing environments, including the home, such as improved ventilation, thermoplastic material, and brand selection. Additionally, our research highlights the need for further regulatory guidelines to ensure the safe use of 3D printing technologies, particularly in the home setting.

5.
Sensors (Basel) ; 22(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36433340

RESUMO

The real-time monitoring of primary biological aerosol particles (PBAP) such as pollen and fungal spores has received much attention in recent years as a result of their health and climatic effects. In this study, the Wideband Integrated Bioaerosol Sensor (WIBS) 4+ model was evaluated for its ability to sample and detect ambient fungal spore and pollen concentrations, compared to the traditional Hirst volumetric method. Although the determination of total pollen and fungal spore ambient concentrations are of interest, the selective detection of individual pollen/fungal spore types are often of greater allergenic/agricultural concern. To aid in this endeavour, modifications were made to the WIBS-4 instrument to target chlorophyll fluorescence. Two additional fluorescence channels (FL4 and FL5 channels) were combined with the standard WIBS channels (FL1, FL2, FL3). The purpose of this modification is to help discriminate between grass and herb pollen from other pollen. The WIBS-4+ was able to successfully detect and differentiate between different bioaerosol classes. The addition of the FL4 and FL5 channels also allowed for the improved differentiation between tree (R2 = 0.8), herbaceous (R2 = 0.6) and grass (R2 = 0.4) pollen and fungal spores (R2 = 0.8). Both grass and herbaceous pollen types showed a high correlation with D type particles, showing strong fluorescence in the FL4 channel. The additional fluorescent data that were introduced also improved clustering attempts, making k-means clustering a comparable solution for this high-resolution data.


Assuntos
Monitoramento Ambiental , Pólen , Esporos Fúngicos , Monitoramento Ambiental/métodos , Pólen/química , Alérgenos , Aerossóis , Poaceae
6.
Aerobiologia (Bologna) ; 38(3): 343-366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199733

RESUMO

Respiratory allergies triggered by pollen allergens represent a significant health concern to the Irish public. Up to now, Ireland has largely refrained from participating in long-term aerobiological studies. Recently, pollen monitoring has commenced in several sampling locations around Ireland. The first results of the pollen monitoring campaigns for Dublin (urban) and Carlow (rural) concerning the period 2017-2019 and 2018-2019, respectively, are presented herein. Additional unpublished pollen data from 1978-1980 and, 2010-2011 were also incorporated in creating the first pollen calendar for Dublin. During the monitoring period over 60 pollen types were identified with an average Annual Pollen Integral (APIn) of 32,217 Pollen × day/m3 for Dublin and 78,411 Pollen × day/m3 for Carlow. The most prevalent pollen types in Dublin were: Poaceae (32%), Urticaceae (29%), Cupressaceae/Taxaceae (11%), Betula (10%), Quercus (4%), Pinus (3%), Fraxinus (2%), Alnus (2%) and Platanus (1%). The predominant pollen types in Carlow were identified as Poaceae (70%), Urticaceae (12%), Betula (10%), Quercus (2%), Fraxinus (1%) and Pinus (1%). These prevalent pollen types increased in annual pollen concentration in both locations from 2018 to 2019 except for Fraxinus. Although higher pollen concentrations were observed for the Carlow (rural) site a greater variety of pollen types were identified for the Dublin (urban) site. The general annual trend in the pollen season began with the release of tree pollen in early spring, followed by the release of grass and herbaceous pollen which dominated the summer months with the annual pollen season coming to an end in October. This behaviour was illustrated for 21 different pollen types in the Dublin pollen calendar. The correlation between ambient pollen concentration and meteorological parameters was also examined and differed greatly depending on the location and study year. A striking feature was a substantial fraction of the recorded pollen sampled in Dublin did not correlate with the prevailing wind directions. However, using non-parametric wind regression, specific source regions could be determined such as Alnus originating from the Southeast, Betula originating from the East and Poaceae originating from the Southwest. Supplementary Information: The online version contains supplementary material available at 10.1007/s10453-022-09751-w.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA