Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39209164

RESUMO

BACKGROUND: Investigating the contributory role that epithelial cell metabolism plays in allergic inflammation is a key factor to understanding what influences dysfunction and the pathogenesis of the allergic disease eosinophilic esophagitis (EoE). We previously highlighted that the absence of hypoxia signaling through hypoxia-inducible factor (HIF)-1α in EoE contributes to esophageal epithelial dysfunction. However, metabolic regulation by HIF-1α has not been explored in esophageal allergy. OBJECTIVES: We sought to define the role of HIF-1α-mediated metabolic dysfunction in esophageal epithelial differentiation processes and barrier function in EoE. METHODS: In RNA sequencing of EoE patient biopsy samples, we observed the expression pattern of key genes involved in mitochondrial metabolism/oxidative phosphorylation (OXPHOS) and glycolysis. Seahorse bioenergetics analysis was performed on EPC2-hTERT cells to decipher the metabolic processes involved in epithelial differentiation processes. In addition, air-liquid interface cultures were used to delineate metabolic dependency mechanisms required for epithelial differentiation. RESULTS: Transcriptomic analysis identified an increase in genes associated with OXPHOS in patients with EoE. Epithelial origin of this signature was confirmed by complex V immunofluorescence of patient biopsy samples. Bioenergetic analysis in vitro revealed that differentiated epithelium was less reliant on OXPHOS compared with undifferentiated epithelium. Increased OXPHOS potential and reduced glycolytic capacity was mirrored in HIF1A-knockdown EPC2-hTERT cells that exhibited a significant absence of terminal markers of epithelial differentiation, including involucrin. Pharmacologic glucose transport inhibition phenocopied this, while rescue of the HIF-1α-deficient phenotype using the pan-prolyl hydroxylase inhibitor dimethyloxalylglycine resulted in restored expression of epithelial differentiation markers. CONCLUSIONS: An OXPHOS-dominated metabolic pattern in EoE patients, brought about largely by the absence of HIF-1α-mediated glycolysis, is linked with the deficit in esophageal epithelial differentiation.

2.
FASEB J ; 38(1): e23358, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050671

RESUMO

MicroRNA (miRNA)-mediated mRNA regulation directs many homeostatic and pathological processes, but how miRNAs coordinate aberrant esophageal inflammation during eosinophilic esophagitis (EoE) is poorly understood. Here, we report a deregulatory axis where microRNA-155 (miR-155) regulates epithelial barrier dysfunction by selectively constraining tight junction CLDN7 (claudin-7). MiR-155 is elevated in the esophageal epithelium of biopsies from patients with active EoE and in cell culture models. MiR-155 localization using in situ hybridization (ISH) in patient biopsies and intra-epithelial compartmentalization of miR-155 show expression predominantly within the basal epithelia. Epithelial miR-155 activity was evident through diminished target gene expression in 3D organotypic cultures, particularly in relatively undifferentiated basal cell states. Mechanistically, generation of a novel cell line with enhanced epithelial miR-155 stable overexpression induced a functionally deficient epithelial barrier in 3D air-liquid interface epithelial cultures measured by transepithelial electrical resistance (TEER). Histological assessment of 3D esophageal organoid cultures overexpressing miR-155 showed notable dilated intra-epithelial spaces. Unbiased RNA-sequencing analysis and immunofluorescence determined a defect in epithelial barrier tight junctions and revealed a selective reduction in the expression of critical esophageal tight junction molecule, claudin-7. Together, our data reveal a previously unappreciated role for miR-155 in mediating epithelial barrier dysfunction in esophageal inflammation.


Assuntos
Claudinas , Esofagite Eosinofílica , MicroRNAs , Humanos , Claudinas/genética , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/metabolismo , Esofagite Eosinofílica/patologia , Células Epiteliais/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Junções Íntimas/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 325(1): G1-G13, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37129237

RESUMO

MicroRNAs (miRNAs) are a class of small endogenous RNA molecules between 18 and 25 nucleotides long. The primary function of miRNAs is in the posttranscriptional regulation of mRNA targets through RNA interference culminating in mRNA degradation or translational repression. MiRNAs are fundamental in physiological and pathological processes such as cell proliferation, differentiation, apoptosis, and inflammation. Among this includes the uncovered potential of miRNAs in overall esophageal disease with a focus on the clinicopathologic allergic disease eosinophilic esophagitis (EoE), gastroesophageal reflux disease (GERD), and the tumorigenic continuum from Barrett's esophagus (BE) toward esophageal adenocarcinoma (EAC). Although these pathologies are distinct from one another, they share pathophysiological elements such as an intense inflammatory milieu, esophageal dysfunction, and as presented in this review, an overlap in miRNA expression which contributes to overall esophageal disease. The overlap in the dysregulated miRNA transcriptome of these pathologies highlights the key role miRNAs play in contributing to esophageal disease progression. Owing to this notable dysregulation, there is an attractive utility for miRNAs as diagnostic and prognostic biomarkers in esophageal diseases that already require invasive endoscopies and biopsy retrieval. In this review miRNAs within EoE, GERD, BE, EAC, and esophageal achalasia are discussed, as well as reviewing a core set of miRNAs shared in the disease progression among some of these pathologies, along with the potential utility of targeting miRNAs as therapeutic options in overall esophageal disease.


Assuntos
Esôfago de Barrett , Esofagite Eosinofílica , Neoplasias Esofágicas , Refluxo Gastroesofágico , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Estudos de Casos e Controles , Neoplasias Esofágicas/metabolismo , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Refluxo Gastroesofágico/metabolismo , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/terapia , Progressão da Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA