Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38522099

RESUMO

Integrated quantum photonic circuits require the efficient coupling of photon sources to photonic waveguides. Hybrid plasmonic/photonic platforms are a promising approach, taking advantage of both plasmon modal confinement for efficient coupling to a nearby emitter and photonic circuitry for optical data transfer and processing. In this work, we established directional quantum dot (QD) emission coupling to a planar TiO2waveguide assisted by a Yagi-Uda antenna. Antenna on waveguide is first designed by scaling radio frequency dimensions to nano-optics, taking into account the hybrid plasmonic/photonic platform. Design is then optimized by full numerical simulations. We fabricate the antenna on a TiO2planar waveguide and deposit a few QDs close to the Yagi-Uda antenna. The optical characterization shows clear directional coupling originating from antenna effect. We estimate the coupling efficiency and directivity of the light emitted into the waveguide.

2.
Opt Express ; 28(14): 20992-21001, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680148

RESUMO

Optical refractive-index sensors exploiting selective co-integration of plasmonics with silicon photonics has emerged as an attractive technology for biosensing applications that can unleash unprecedented performance breakthroughs that reaps the benefits of both technologies. However, towards this direction, a major challenge remains their integration using exclusively CMOS-compatible materials. In this context, herein, we demonstrate, for the first time to our knowledge, a CMOS-compatible plasmo-photonic Mach-Zehnder-interferometer (MZI) based on aluminum and Si3N4 waveguides, exhibiting record-high bulk sensitivity of 4764 nm/RIU with clear potential to scale up the bulk sensitivity values by properly engineering the design parameters of the MZI. The proposed sensor is composed of Si3N4 waveguides butt-coupled with an aluminum stripe in one branch to realize the sensing transducer. The reference arm is built by Si3N4 waveguides, incorporating a thermo-optic phase shifter followed by an MZI-based variable optical attenuation stage to maximize extinction ratio up to 38 dB, hence optimizing the overall sensing performance. The proposed sensor exhibits the highest bulk sensitivity among all plasmo-photonic counterparts, while complying with CMOS manufacturing standards, enabling volume manufacturing.

3.
Opt Express ; 27(12): 17102-17111, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252927

RESUMO

We demonstrate a photonic integrated Mach-Zehnder interferometric sensor, utilizing a plasmonic stripe waveguide in the sensing branch and a photonic variable optical attenuator and a phase shifter in the reference arm to optimize the interferometer operation. The plasmonic sensor is used to detect changes in the refractive index of the surrounding medium exploiting the accumulated phase change of the propagating Surface-Plasmon-Polariton (SPP) mode that is fully exposed in an aqueous buffer solution. The variable optical attenuation stage is incorporated in the reference Si3N4 branch, as the means to counter-balance the optical losses introduced by the plasmonic branch and optimize interference at the sensor output. Bulk sensitivity values of 1930 nm/RIU were experimentally measured for a Mach Zehnder Interferometer (MZI) with a Free Spectral Range of 24.8 nm, along with extinction ratio of more than 35 dB, demonstrating the functional benefits of the co-integration of plasmonic and photonic waveguides.


Assuntos
Técnicas Biossensoriais/métodos , Interferometria/métodos , Óptica e Fotônica/métodos , Compostos de Silício/química , Eletricidade , Refratometria
4.
Opt Express ; 26(8): 9813-9821, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715927

RESUMO

Damping distances of surface plasmon polariton modes sustained by different thin titanium nitride (TiN) films are measured at the telecom wavelength of 1.55 µm. The damping distances are correlated to the electrical direct current resistivity of the films sustaining the surface plasmon modes. It is found that TiN/Air surface plasmon mode damping distances drop non-linearly from 40 to 16µm as the resistivity of the layers increases from 28 to 130µΩ.cm, respectively. The relevance of the direct current (dc) electrical resistivity for the characterization of TiN plasmonic properties is investigated in the framework of the Drude model, on the basis of parameters extracted from spectroscopic ellipsometry experiments. By probing a parametric space of realistic values for parameters of the Drude model, we obtain a nearly univocal dependence of the surface plasmon damping distance on the dc resistivity demonstrating the relevance of dc resistivity for the evaluation of the plasmonic performances of TiN at telecom frequencies. Finally, we show that better plasmonic performances are obtained for TiN films featuring a low content of oxygen. For low oxygen content and corresponding low resistivity, we attribute the increase of the surface plasmon damping distances to a lower confinement of the plasmon field into the metal and not to a decrease of the absorption of TiN.

5.
Opt Express ; 26(10): 12469-12478, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801284

RESUMO

We demonstrate wavelength-division-multiplexed (WDM) 200 Gb/s (8 × 25 Gb/s) data transmission over 100 µm long aluminum (Al) surface-plasmon-polariton (SPP) waveguides on a Si3N4 waveguide platform at telecom wavelengths. The Al SPP waveguide was evaluated in terms of signal integrity by performing bit-error-rate (BER) measurements that revealed error-free operation for all eight 25 Gb/s non-return-to-zero (NRZ) modulated data channels with power penalties not exceeding 0.2 dB at 10-9. To the best of our knowledge, this is the first demonstration of WDM enabled data transmission over complementary-metal-oxide-semiconductor (CMOS) SPP waveguides fueling future development of CMOS compatible plasmo-photonic devices for on-chip optical interconnections.

6.
Opt Express ; 25(1): 394-408, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28085833

RESUMO

Dielectric loaded surface plasmon waveguides (DLSPPWs) comprised of polymer ridges deposited on top of CMOS compatible metal thin films are investigated at telecom wavelengths. We perform a direct comparison of the properties of copper (Cu), aluminum (Al), titanium nitride (TiN) and gold (Au) based waveguides by implementing the same plasmonic waveguiding configuration for each metal. The DLSPPWs are characterized by leakage radiation microscopy and a fiber-to-fiber configuration mimicking the cut-back method. We introduce the ohmic loss rate (OLR) to analyze quantitatively the properties of the CMOS metal based DLSPPWs relative to the corresponding Au based waveguides. We show that the Cu, Al and TiN based waveguides feature extra ohmic loss compared to Au of 0.027 dB/µm, 0.18 dB/µm and 0.52 dB/µm at 1550nm respectively. The dielectric function of each metal extracted from ellipsometric spectroscopic measurements is used to model the properties of the DLSP-PWs. We find a fairly good agreement between experimental and modeled DLSPPWs properties except for Al featuring a large surface roughness. Finally, we conclude that TiN based waveguides sustaining intermediate effective index (in the range 1.05-1.25) plasmon modes propagate over very short distances restricting the the use of those modes in practical situations.

7.
Opt Express ; 24(4): 3873-84, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907040

RESUMO

We introduce a new type of electroplasmonic interfacing component to electrically generate surface plasmons. Specifically, an electron-fed optical tunneling gap antenna is integrated on a plasmonic waveguiding platform. When electrical charges are injected in the tunneling barrier of the gap antenna, a broad-band radiation is emitted from the feed area by a process identified as a thermal emission of hot electrons. Part of the emitted photons couples to surface plasmon modes sustained by the waveguide geometry. The transducing optical antenna is thus acting as a localized electrical source of surface plasmon polaritons. The integration of electrically-activated optical antennas into a plasmonic architecture mitigates the need for complex coupling scheme and proposes a solution for realizing nanoscale units at the interface between nano-electronics and photonics.

8.
Opt Express ; 20(7): 7655-62, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22453444

RESUMO

We demonstrate Wavelength Division Multiplexed (WDM)-enabled transmission of 480Gb/s aggregate data traffic (12x40Gb/s) as well as high-quality 1x2 thermo-optic tuning in Dielectric-Loaded Surface Plasmon Polariton Waveguides (DLSPPWs). The WDM transmission characteristics have been verified through BER measurements by exploiting the heterointegration of a 60 µm-long straight DLSPPW on a Silicon-on-Insulator waveguide platform, showing error-free performance for six out of the twelve channels. High-quality thermo-optic tuning has been achieved by utilizing Cycloaliphatic-Acrylate-Polymer as an efficient thermo-optic polymer loading employed in a dual-resonator DLSPPW switching structure, yielding a 9 nm wavelength shift and extinction ratio values higher than 10 dB at both output ports when heated to 90°C.


Assuntos
Dispositivos Ópticos , Processamento de Sinais Assistido por Computador/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura
9.
Curr Mol Med ; 10(7): 640-52, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20712588

RESUMO

Scientific advances have significantly improved the practice of medicine by providing objective and quantitative means for exploring the human body and disease states. These innovative technologies have already profoundly improved disease detection, imaging, treatment and patient follow-up. Today's analytical limits are at the nanoscale level (one-billionth of a meter) enabling a detailed exploration at the level of DNA, RNA, proteins and metabolites which are in fact nano-objects. This translational review aims at integrating some recent advances from micro- and nano-technologies with high potential for improving daily oncology practice.


Assuntos
Antineoplásicos , Técnicas Biossensoriais , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina , Nanotecnologia , Neoplasias , Biomarcadores Tumorais , Humanos , Microfluídica , Nanopartículas , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Fisiológica , Transdução de Sinais
10.
J Microsc ; 239(2): 167-72, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20629922

RESUMO

Using a single-mode dielectric-loaded surface plasmon polariton waveguide doped with quantum dots, we were able to slightly increase the propagation length of the mode by stimulated emission of plasmon. We analyse the amplification phenomenon in the visible range by combining leakage radiation microscopy and surface plasmon coupled emission techniques.

11.
Opt Express ; 16(22): 17599-608, 2008 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-18958040

RESUMO

This paper demonstrates the efficiency of the differential method, a conventional grating theory, to investigate dielectric loaded surface plasmon polariton waveguides (DLSPPWs), known to be a potential solution for optical interconnects. The method is used to obtain the mode effective indices (both real and imaginary parts) and the mode profiles. The results obtained with the differential method are found to be in good agreement with those provided by the effective index method or finite elements. The versatility of the differential method is demonstrated by considering complex configurations such as trapezoidal waveguides or DLSPPWs lying on a finite width metal stripe.

12.
J Microsc ; 229(Pt 2): 210-6, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18304074

RESUMO

According to Fermi's golden rule, the fluorescence decay rate is directly proportional to the projected local density of photonic modes (LDOS) at the molecule location. The relevant LDOS depends on the molecule orientation. In this paper, the direct measurement of the fluorescence lifetime near gold dot photonic structures is investigated and compared to calculated LDOS. Detailed analysis of the decay channels is presented on the basis of numerical simulations.

13.
Nano Lett ; 7(5): 1352-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17439291

RESUMO

The optical properties of in-plane integrated surface plasmon polariton (SPP) cavities comprised of a thin film area sandwiched between two one-dimensional Bragg SPP mirrors are investigated numerically and experimentally. We discuss the resonance condition of these cavities, and we analyze in details the physical origin of the dispersion of this resonance. On the basis of numerical results, we show that in-plane SPP cavities can be used to achieve local SPP field enhancement and antireflecting SPP layers. The numerical results are compared to near-field optical images recorded by operating a photon scanning tunneling microscope. From the near-field images recorded over cavities with different sizes at different frequencies, we verify the resonance condition obtained numerically and we measure the quality factor of a submicrometer in-plane integrated SPP cavity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...