Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 229, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172111

RESUMO

Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employ wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determine cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks exhibit overlapping organization. We find that there is considerable network overlap (both modalities) in addition to disjoint organization. Our results show that multiple BOLD networks are detected via Ca2+ signals, and networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks. In addition, the principal gradient of functional connectivity is nearly identical for BOLD and Ca2+ signals. Despite similarities, important differences are also detected across modalities, such as in measures of functional connectivity strength and diversity. In conclusion, Ca2+ imaging uncovers overlapping functional cortical organization in the mouse that reflects several, but not all, properties observed with fMRI-BOLD signals.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Neurônios
2.
Elife ; 122023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824184

RESUMO

Understanding how the brain's macroscale dynamics are shaped by underlying microscale mechanisms is a key problem in neuroscience. In animal models, we can now investigate this relationship in unprecedented detail by directly manipulating cellular-level properties while measuring the whole-brain response using resting-state fMRI. Here, we focused on understanding how blood-oxygen-level-dependent (BOLD) dynamics, measured within a structurally well-defined striato-thalamo-cortical circuit in mice, are shaped by chemogenetically exciting or inhibiting D1 medium spiny neurons (MSNs) of the right dorsomedial caudate putamen (CPdm). We characterize changes in both the BOLD dynamics of individual cortical and subcortical brain areas, and patterns of inter-regional coupling (functional connectivity) between pairs of areas. Using a classification approach based on a large and diverse set of time-series properties, we found that CPdm neuromodulation alters BOLD dynamics within thalamic subregions that project back to dorsomedial striatum. In the cortex, changes in local dynamics were strongest in unimodal regions (which process information from a single sensory modality) and weakened along a hierarchical gradient towards transmodal regions. In contrast, a decrease in functional connectivity was observed only for cortico-striatal connections after D1 excitation. Our results show that targeted cellular-level manipulations affect local BOLD dynamics at the macroscale, such as by making BOLD dynamics more predictable over time by increasing its self-correlation structure. This contributes to ongoing attempts to understand the influence of structure-function relationships in shaping inter-regional communication at subcortical and cortical levels.


Assuntos
Mapeamento Encefálico , Encéfalo , Camundongos , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Corpo Estriado , Neostriado
3.
Mol Psychiatry ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737483

RESUMO

Functional and structural connectivity alterations in short- and long-range projections have been reported across neurodevelopmental disorders (NDD). Interhemispheric callosal projection neurons (CPN) represent one of the major long-range projections in the brain, which are particularly important for higher-order cognitive function and flexibility. However, whether a causal relationship exists between interhemispheric connectivity alterations and cognitive deficits in NDD remains elusive. Here, we focused on CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental disorder caused by mutations in the X-linked Cyclin-dependent kinase-like 5 (CDKL5) gene. We found an increase in homotopic interhemispheric connectivity and functional hyperconnectivity across higher cognitive areas in adult male and female CDKL5-deficient mice by resting-state functional MRI (rs-fMRI) analysis. This was accompanied by an increase in the number of callosal synaptic inputs but decrease in local synaptic connectivity in the cingulate cortex of juvenile CDKL5-deficient mice, suggesting an impairment in excitatory synapse development and a differential role of CDKL5 across excitatory neuron subtypes. These deficits were associated with significant cognitive impairments in CDKL5 KO mice. Selective deletion of CDKL5 in the largest subtype of CPN likewise resulted in an increase of functional callosal inputs, without however significantly altering intracortical cingulate networks. Notably, such callosal-specific changes were sufficient to cause cognitive deficits. Finally, when CDKL5 was selectively re-expressed only in this CPN subtype, in otherwise CDKL5-deficient mice, it was sufficient to prevent the cognitive impairments of CDKL5 mutants. Together, these results reveal a novel role of CDKL5 by demonstrating that it is both necessary and sufficient for proper CPN connectivity and cognitive function and flexibility, and further validates a causal relationship between CPN dysfunction and cognitive impairment in a model of NDD.

4.
Immunity ; 54(11): 2611-2631.e8, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758338

RESUMO

Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.


Assuntos
Hipocampo/metabolismo , Interleucina-6/biossíntese , Exposição Materna , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Sinapses/metabolismo , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hipocampo/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos , Gravidez , Transdução de Sinais , Transmissão Sináptica
5.
Transl Psychiatry ; 11(1): 457, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34482367

RESUMO

In the past decade, the idea that single populations of neurons support cognition and behavior has gradually given way to the realization that connectivity matters and that complex behavior results from interactions between remote yet anatomically connected areas that form specialized networks. In parallel, innovation in brain imaging techniques has led to the availability of a broad set of imaging tools to characterize the functional organization of complex networks. However, each of these tools poses significant technical challenges and faces limitations, which require careful consideration of their underlying anatomical, physiological, and physical specificity. In this review, we focus on emerging methods for measuring spontaneous or evoked activity in the brain. We discuss methods that can measure large-scale brain activity (directly or indirectly) with a relatively high temporal resolution, from milliseconds to seconds. We further focus on methods designed for studying the mammalian brain in preclinical models, specifically in mice and rats. This field has seen a great deal of innovation in recent years, facilitated by concomitant innovation in gene-editing techniques and the possibility of more invasive recordings. This review aims to give an overview of currently available preclinical imaging methods and an outlook on future developments. This information is suitable for educational purposes and for assisting scientists in choosing the appropriate method for their own research question.


Assuntos
Encéfalo , Roedores , Animais , Encéfalo/diagnóstico por imagem , Cognição , Camundongos , Neuroimagem , Ratos
6.
Elife ; 92020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32746967

RESUMO

Excitation-inhibition (E:I) imbalance is theorized as an important pathophysiological mechanism in autism. Autism affects males more frequently than females and sex-related mechanisms (e.g., X-linked genes, androgen hormones) can influence E:I balance. This suggests that E:I imbalance may affect autism differently in males versus females. With a combination of in-silico modeling and in-vivo chemogenetic manipulations in mice, we first show that a time-series metric estimated from fMRI BOLD signal, the Hurst exponent (H), can be an index for underlying change in the synaptic E:I ratio. In autism we find that H is reduced, indicating increased excitation, in the medial prefrontal cortex (MPFC) of autistic males but not females. Increasingly intact MPFC H is also associated with heightened ability to behaviorally camouflage social-communicative difficulties, but only in autistic females. This work suggests that H in BOLD can index synaptic E:I ratio and that E:I imbalance affects autistic males and females differently.


Autism is a condition that is usually diagnosed early in life that affects how a person communicates and socializes, and is often characterized by repetitive behaviors. One key theory of autism is that it reflects an imbalance in levels of excitation and inhibition in the brain. Excitatory signals are those that make other brain cells more likely to become active; inhibitory signals have the opposite effect. In non-autistic individuals, inhibitory activity outweighs excitatory activity. In people with autism, by contrast, an increase in excitatory activity is believed to produce an imbalance in excitation and inhibition. Most of the evidence to support this excitation-inhibition imbalance theory has come from studies of rare mutations that cause autism. Many of these mutations occur on the sex chromosomes or are influenced by androgen hormones (hormones that usually play a role on typically male traits). However, most people with autism do not possess these particular mutations. It was thus unclear whether the theory could apply to everyone with autism or, for example, whether it may better apply to specific groups of individuals based on their sex or gender. This is especially important given that about four times as many men and boys compared to women and girls are diagnosed with autism. Trakoshis, Martínez-Cañada et al. have now found a way to ask whether any imbalance in excitation and inhibition in the brain occurs differently in men and women. Using computer modeling, they identified a signal in brain scans that corresponds to an imbalance of excitation and inhibition. After showing that the technique works to identify real increases in excitation in the brain scans of mice, Trakoshis, Martínez-Cañada et al. looked for this signal, or biomarker, in brain scans of people with and without autism. All the people in the study identified with the gender that matched the sex they were assigned at birth. The results revealed differences between the men and women with autism. Men with autism showed an imbalance in excitation and inhibition in specific 'social brain' regions including the medial prefrontal cortex, but women with autism did not. Notably, many of these brain regions are strongly affected by androgen hormones. Previous studies have found that women with autism are sometimes better at hiding or 'camouflaging' their difficulties when socializing or communicating than men with autism. Trakoshis, Martínez-Cañada et al. showed that the better a woman was at camouflaging her autism, the more her brain activity in this region resembled that of non-autistic women. Excitation-inhibition imbalance may thus affect specific brain regions involved in socializing and communication more in men who have autism than in women with the condition. Balanced excitation and inhibition in these brain areas may enable some women with autism to camouflage their difficulties socializing or communicating. Being able to detect imbalances in activity using standard brain imaging could be useful for clinical trials. Future studies could use this biomarker to monitor responses to drug treatments that aim to adjust the balance between excitation and inhibition.


Assuntos
Transtorno Autístico/fisiopatologia , Comunicação , Camundongos Endogâmicos C57BL/fisiologia , Córtex Pré-Frontal/fisiopatologia , Adulto , Animais , Inglaterra , Feminino , Humanos , Inibição Psicológica , Idioma , Imageamento por Ressonância Magnética , Masculino , Camundongos , Pessoa de Meia-Idade , Fatores Sexuais , Adulto Jovem
7.
Cereb Cortex ; 30(9): 4922-4937, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32313923

RESUMO

Abnormal brain development manifests itself at different spatial scales. However, whether abnormalities at the cellular level can be diagnosed from network activity measured with functional magnetic resonance imaging (fMRI) is largely unknown, yet of high clinical relevance. Here a putative mechanism reported in neurodevelopmental disorders, that is, excitation-to-inhibition ratio (E:I), was chemogenetically increased within cortical microcircuits of the mouse brain and measured via fMRI. Increased E:I caused a significant "reduction" of long-range connectivity, irrespective of whether excitatory neurons were facilitated or inhibitory Parvalbumin (PV) interneurons were suppressed. Training a classifier on fMRI signals, we were able to accurately classify cortical areas exhibiting increased E:I. This classifier was validated in an independent cohort of Fmr1y/- knockout mice, a model for autism with well-documented loss of parvalbumin neurons and chronic alterations of E:I. Our findings demonstrate a promising novel approach towards inferring microcircuit abnormalities from macroscopic fMRI measurements.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Neurônios/fisiologia , Animais , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia
8.
Neuron ; 103(4): 702-718.e5, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227310

RESUMO

The locus coeruleus (LC) supplies norepinephrine (NE) to the entire forebrain and regulates many fundamental brain functions. Studies in humans have suggested that strong LC activation might shift network connectivity to favor salience processing. To causally test this hypothesis, we use a mouse model to study the effect of LC stimulation on large-scale functional connectivity by combining chemogenetic activation of the LC with resting-state fMRI, an approach we term "chemo-connectomics." We show that LC activation rapidly interrupts ongoing behavior and strongly increases brain-wide connectivity, with the most profound effects in the salience and amygdala networks. Functional connectivity changes strongly correlate with transcript levels of alpha-1 and beta-1 adrenergic receptors across the brain, and functional network connectivity correlates with NE turnover within select brain regions. We propose that these changes in large-scale network connectivity are critical for optimizing neural processing in the context of increased vigilance and threat detection.


Assuntos
Conectoma , Locus Cerúleo/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Receptores Adrenérgicos beta 1/fisiologia , Animais , Ansiedade/fisiopatologia , Clozapina/farmacologia , Corpo Estriado/metabolismo , Drogas Desenhadas/farmacologia , Dopamina/metabolismo , Comportamento Exploratório/fisiologia , Neuroimagem Funcional , Genes fos , Locus Cerúleo/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Norepinefrina/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/genética , Receptores Adrenérgicos alfa 1/biossíntese , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos beta 1/biossíntese , Receptores Adrenérgicos beta 1/genética , Receptores de Droga/fisiologia , Teste de Desempenho do Rota-Rod , Regulação para Cima/efeitos dos fármacos
9.
Neuroimage ; 191: 392-402, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807820

RESUMO

Previous work has demonstrated that neuroimaging biomarkers which capture functional connectivity of the brain can be used to define a specific and robust endophenotype in Fmr1-/y mice, a well-established animal model of human Fragile-X Syndrome (FXS). However, it is currently unknown whether this macroscopic measure of brain connectivity is sufficiently sensitive to reliably detect changes caused by pharmacological interventions. Here we inhibited the activity of the metabotropic glutamate receptor-5 (mGluR5) using AFQ056/Mavoglurant, a drug that is assumed to normalize excitatory/inhibitory neural signaling imbalances in FXS. We employed resting-state-fMRI (rs-fMRI) and diffusion-weighted imaging (DWI) to test whether Mavoglurant re-established brain connectivity - at least partly - within some of the affected circuits in Fmr1-/y mice that are related to social behavior deficits. In line with previous findings, we observed that Fmr1-/y mice exhibited impaired social interaction, reduced connectivity in three main functional networks and altered network topology. At the group level, Mavoglurant did neither rescue abnormal social behavioral nor white matter abnormalities; however, for some, but not all of these circuits Mavoglurant had a genotype-specific effect of restoring functional connectivity. These results show that rs-fMRI connectivity is sufficiently sensitive to pick up system-level changes after the pharmacological inhibition of mGluR5 activity. However, our results also show that the effects of Mavoglurant are confined to specific networks suggesting that behavioral benefits might be restricted to narrow functional domains.


Assuntos
Encéfalo/efeitos dos fármacos , Indóis/farmacologia , Vias Neurais/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/metabolismo , Neuroimagem/métodos
10.
J Neurosci ; 39(8): 1525-1538, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30593497

RESUMO

Overreactivity and defensive behaviors in response to tactile stimuli are common symptoms in autism spectrum disorder (ASD) patients. Similarly, somatosensory hypersensitivity has also been described in mice lacking ASD-associated genes such as Fmr1 (fragile X mental retardation protein 1). Fmr1 knock-out mice also show reduced functional connectivity between sensory cortical areas, which may represent an endogenous biomarker for their hypersensitivity. Here, we measured whole-brain functional connectivity in Engrailed-2 knock-out (En2-/-) adult mice, which show a lower expression of Fmr1 and anatomical defects common to Fmr1 knock-outs. MRI-based resting-state functional connectivity in adult En2-/- mice revealed significantly reduced synchronization in somatosensory-auditory/associative cortices and dorsal thalamus, suggesting the presence of aberrant somatosensory processing in these mutants. Accordingly, when tested in the whisker nuisance test, En2-/- but not WT mice of both sexes showed fear behavior in response to repeated whisker stimulation. En2-/- mice undergoing this test exhibited decreased c-Fos-positive neurons (a marker of neuronal activity) in layer IV of the primary somatosensory cortex and increased immunoreactive cells in the basolateral amygdala compared with WT littermates. Conversely, when tested in a sensory maze, En2-/- and WT mice spent a comparable time in whisker-guided exploration, indicating that whisker-mediated behaviors are otherwise preserved in En2 mutants. Therefore, fearful responses to somatosensory stimuli in En2-/- mice are accompanied by reduced basal connectivity of sensory regions, reduced activation of somatosensory cortex, and increased activation of the basolateral amygdala, suggesting that impaired somatosensory processing is a common feature in mice lacking ASD-related genes.SIGNIFICANCE STATEMENT Overreactivity to tactile stimuli is a common symptom in autism spectrum disorder (ASD) patients. Recent studies performed in mice bearing ASD-related mutations confirmed these findings. Here, we evaluated the behavioral response to whisker stimulation in mice lacking the ASD-related gene Engrailed-2 (En2-/- mice). Compared with WT controls, En2-/- mice showed reduced functional connectivity in the somatosensory cortex, which was paralleled by fear behavior, reduced activation of somatosensory cortex, and increased activation of the basolateral amygdala in response to repeated whisker stimulation. These results suggest that impaired somatosensory signal processing is a common feature in mice harboring ASD-related mutations.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Medo/fisiologia , Proteínas do Tecido Nervoso/deficiência , Córtex Somatossensorial/fisiopatologia , Vibrissas/fisiologia , Animais , Transtorno do Espectro Autista/psicologia , Complexo Nuclear Basolateral da Amígdala/diagnóstico por imagem , Complexo Nuclear Basolateral da Amígdala/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Conectoma , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Proteínas Proto-Oncogênicas c-fos/análise , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/patologia , Tálamo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
11.
Cereb Cortex ; 28(7): 2495-2506, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29901787

RESUMO

Autism spectrum disorders (ASD) are a set of complex neurodevelopmental disorders for which there is currently no targeted therapeutic approach. It is thought that alterations of genes regulating migration and synapse formation during development affect neural circuit formation and result in aberrant connectivity within distinct circuits that underlie abnormal behaviors. However, it is unknown whether deviant developmental trajectories are circuit-specific for a given autism risk-gene. We used MRI to probe changes in functional and structural connectivity from childhood to adulthood in Fragile-X (Fmr1-/y) and contactin-associated (CNTNAP2-/-) knockout mice. Young Fmr1-/y mice (30 days postnatal) presented with a robust hypoconnectivity phenotype in corticocortico and corticostriatal circuits in areas associated with sensory information processing, which was maintained until adulthood. Conversely, only small differences in hippocampal and striatal areas were present during early postnatal development in CNTNAP2-/- mice, while major connectivity deficits in prefrontal and limbic pathways developed between adolescence and adulthood. These findings are supported by viral tracing and electron micrograph approaches and define 2 clearly distinct connectivity endophenotypes within the autism spectrum. We conclude that the genetic background of ASD strongly influences which circuits are most affected, the nature of the phenotype, and the developmental time course of the associated changes.


Assuntos
Transtorno Autístico , Encéfalo/crescimento & desenvolvimento , Proteína do X Frágil da Deficiência Intelectual/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Transtorno Autístico/complicações , Transtorno Autístico/genética , Transtorno Autístico/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Mapeamento Encefálico , Conectoma , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Processamento de Imagem Assistida por Computador , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imageamento por Ressonância Magnética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Transdução Genética , Proteína Vermelha Fluorescente
12.
Immunity ; 48(5): 979-991.e8, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752066

RESUMO

The triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial innate immune receptor associated with a lethal form of early, progressive dementia, Nasu-Hakola disease, and with an increased risk of Alzheimer's disease. Microglial defects in phagocytosis of toxic aggregates or apoptotic membranes were proposed to be at the origin of the pathological processes in the presence of Trem2 inactivating mutations. Here, we show that TREM2 is essential for microglia-mediated synaptic refinement during the early stages of brain development. The absence of Trem2 resulted in impaired synapse elimination, accompanied by enhanced excitatory neurotransmission and reduced long-range functional connectivity. Trem2-/- mice displayed repetitive behavior and altered sociability. TREM2 protein levels were also negatively correlated with the severity of symptoms in humans affected by autism. These data unveil the role of TREM2 in neuronal circuit sculpting and provide the evidence for the receptor's involvement in neurodevelopmental diseases.


Assuntos
Encéfalo/imunologia , Glicoproteínas de Membrana/imunologia , Microglia/imunologia , Neurônios/imunologia , Receptores Imunológicos/imunologia , Sinapses/imunologia , Animais , Transtorno Autístico/genética , Transtorno Autístico/imunologia , Transtorno Autístico/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Microglia/metabolismo , Neurônios/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/genética , Transmissão Sináptica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...