Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 10: 545371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194793

RESUMO

Various adjuvant effects on the immunogenicity of the candidate inactivated Puumala virus vaccine were detected in BALB/c mice. Adjuvants under study were: aluminum hydroxide, spherical particles of Tobacco mosaic virus coat protein, B subunit of heat-labile enterotoxin of Escherichia coli, and low endotoxic lipopolysaccharide of Shigella sonnei. Aluminum hydroxide (1 mg/ml) did not affect neutralizing antibodies' induction and vaccine stability during storage compared to immunization with the vaccine without adjuvant. B subunit of heat-labile enterotoxin (0.2 µg/ml), low endotoxic lipopolysaccharide (50 µg/ml), and plant virus-based spherical particles (300 µg/ml) significantly enhance the humoral immune response of vaccine (p < 0.0001). Pronounced stimulation of IL-12 and IFN-É£ was observed when mice were immunized with vaccines both with adjuvants (except of aluminum hydroxide) and without adjuvants. It has been shown that low endotoxic lipopolysaccharide contributes not only to enhance the immune response but also to stabilize vaccine immunogenicity during at least 1 year storage.


Assuntos
Toxinas Bacterianas , Proteínas de Escherichia coli , Virus Puumala , Adjuvantes Imunológicos , Animais , Enterotoxinas , Camundongos , Camundongos Endogâmicos BALB C
2.
Vaccine ; 37(8): 1062-1072, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30670300

RESUMO

Shigellosis, a major cause of diarrhea worldwide, exhibits high morbidity and mortality in children. Specificity of Shigella immunity is determined by the structure of the main protective O-antigen polysaccharide component incorporated into the lipopolysaccharide (LPS) molecule. Endotoxicity, however, precludes LPS clinical use. Thus, there is still no vaccine against the most prevalent shigellosis species (serotype S. flexneri 2a), despite ongoing efforts focused on inducing serotype-specific immunity. As LPS is highly heterogenous, we hypothesized that more homogenous pools of LPS might be less toxic. We developed a method to generate a homogenous S. flexneri 2a LPS subfraction, Ac3-S-LPS, containing long chain O-specific polysaccharide (S-LPS) and mainly tri-acylated lipid A, with no penta- and hexa-acylated, and rare tetra-acylated lipid A. Ac3-S-LPS had dramatically reduced pyrogenicity and protected guinea pigs from shigellosis. In volunteers, 50 µg of injected Ac3-S-LPS vaccine was safe, with low pyrogenicity, no severe and few minor adverse events, and did not induce pro-inflammatory cytokines. In spite of the profound lipid A modification, the vaccine induced a prevalence of IgG and IgA antibodies. Thus, we have developed the first safe immunogenic LPS-based vaccine candidate for human administration. Homogenous underacetylated LPSs may also be useful for treating other LPS-driven human diseases. Clinical trial registry: http://grls.rosminzdrav.ru/.


Assuntos
Acilação/imunologia , Disenteria Bacilar/imunologia , Lipopolissacarídeos/imunologia , Vacinas contra Shigella/imunologia , Shigella flexneri/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Linhagem Celular Tumoral , Cobaias , Humanos , Antígenos O/imunologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...