Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sens Actuators B Chem ; 3412021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34092923

RESUMO

There is a need for valves and pumps that operate at the microscale with precision and accuracy, are versatile in their application, and are easily fabricated. To that end, we developed a new rotary planar multiport valve to faithfully select solutions (contamination = 5.22 ± 0.06 ppb) and a rotary planar peristaltic pump to precisely control fluid delivery (flow rate = 2.4 ± 1.7 to 890 ± 77 µL/min). Both the valve and pump were implemented in a planar format amenable to single-layer soft lithographic fabrication. These planar microfluidics were actuated by a rotary motor controlled remotely by custom software. Together, these two devices constitute an innovative microformulator that was used to prepare precise, high-fidelity mixtures of up to five solutions (deviation from prescribed mixture = ±|0.02 ± 0.02| %). This system weighed less than a kilogram, occupied around 500 cm3, and generated pressures of 255 ± 47 kPa. This microformulator was then combined with an electrochemical sensor creating a microclinical analyzer (µCA) for detecting glutamate in real time. Using the chamber of the µCA as an in-line bioreactor, we compared glutamate homeostasis in human astrocytes differentiated from human-induced pluripotent stem cells (hiPSCs) from a control subject (CC-3) and a Tuberous Sclerosis Complex (TSC) patient carrying a pathogenic TSC2 mutation. When challenged with glutamate, TSC astrocytes took up less glutamate than control cells. These data validate the analytical power of the µCA and the utility of the microformulator by leveraging it to assess disease-related alterations in cellular homeostasis.

2.
Lab Chip ; 19(5): 864-874, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30720811

RESUMO

Microfluidic organ-on-chip devices constructed from polydimethylsiloxane (PDMS) have proven useful in studying both beneficial and adverse effects of drugs, supplements, and potential toxicants. Despite multiple advantages, one clear drawback of PDMS-based devices is binding of hydrophobic chemicals to their exposed surfaces. Chemical binding to PDMS can change the timing and extent of chemical delivery to cells in such devices, potentially altering dose-response curves. Recent efforts have quantified PDMS binding for selected chemicals. Here, we test a wider set of nineteen chemicals using UV-vis or infrared spectroscopy to characterize loss of chemical from solution in two setups with different PDMS-surface-to-solution-volume ratios. We find discernible PDMS binding for eight chemicals and show that PDMS binding is strongest for chemicals with a high octanol-water partition coefficient (log P > 1.85) and low H-bond donor number. Further, by measuring depletion and return of chemical from solution over tens to hundreds of hours and fitting these results to a first order model of binding kinetics, we characterize partitioning into PDMS in terms of binding capacities per unit surface area and both forward and reverse rate constants. These fitted parameters were used to model the impact of PDMS binding on chemical transport and bioavailability under realistic flow conditions and device geometry. The models predict that PDMS binding could alter in-device cellular exposures for both continuous and bolus dosing schemes by up to an order of magnitude compared to nominal input doses.


Assuntos
Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacocinética , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Sítios de Ligação , Disponibilidade Biológica , Dimetilpolisiloxanos/síntese química , Cinética , Estrutura Molecular
3.
J R Soc Interface ; 15(138)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29367239

RESUMO

A main goal of mathematical and computational oncology is to develop quantitative tools to determine the most effective therapies for each individual patient. This involves predicting the right drug to be administered at the right time and at the right dose. Such an approach is known as precision medicine. Mathematical modelling can play an invaluable role in the development of such therapeutic strategies, since it allows for relatively fast, efficient and inexpensive simulations of a large number of treatment schedules in order to find the most effective. This review is a survey of mathematical models that explicitly take into account the spatial architecture of three-dimensional tumours and address tumour development, progression and response to treatments. In particular, we discuss models of epithelial acini, multicellular spheroids, normal and tumour spheroids and organoids, and multi-component tissues. Our intent is to showcase how these in silico models can be applied to patient-specific data to assess which therapeutic strategies will be the most efficient. We also present the concept of virtual clinical trials that integrate standard-of-care patient data, medical imaging, organ-on-chip experiments and computational models to determine personalized medical treatment strategies.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Neoplasias , Medicina de Precisão/métodos , Esferoides Celulares , Humanos , Oncologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Células Tumorais Cultivadas
4.
J Neuroinflammation ; 13(1): 306, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27955696

RESUMO

BACKGROUND: Understanding blood-brain barrier responses to inflammatory stimulation (such as lipopolysaccharide mimicking a systemic infection or a cytokine cocktail that could be the result of local or systemic inflammation) is essential to understanding the effect of inflammatory stimulation on the brain. It is through the filter of the blood-brain barrier that the brain responds to outside influences, and the blood-brain barrier is a critical point of failure in neuroinflammation. It is important to note that this interaction is not a static response, but one that evolves over time. While current models have provided invaluable information regarding the interaction between cytokine stimulation, the blood-brain barrier, and the brain, these approaches-whether in vivo or in vitro-have often been only snapshots of this complex web of interactions. METHODS: We utilize new advances in microfluidics, organs-on-chips, and metabolomics to examine the complex relationship of inflammation and its effects on blood-brain barrier function ex vivo and the metabolic consequences of these responses and repair mechanisms. In this study, we pair a novel dual-chamber, organ-on-chip microfluidic device, the NeuroVascular Unit, with small-volume cytokine detection and mass spectrometry analysis to investigate how the blood-brain barrier responds to two different but overlapping drivers of neuroinflammation, lipopolysaccharide and a cytokine cocktail of IL-1ß, TNF-α, and MCP1,2. RESULTS: In this study, we show that (1) during initial exposure to lipopolysaccharide, the blood-brain barrier is compromised as expected, with increased diffusion and reduced presence of tight junctions, but that over time, the barrier is capable of at least partial recovery; (2) a cytokine cocktail also contributes to a loss of barrier function; (3) from this time-dependent cytokine activation, metabolic signature profiles can be obtained for both the brain and vascular sides of the blood-brain barrier model; and (4) collectively, we can use metabolite analysis to identify critical pathways in inflammatory response. CONCLUSIONS: Taken together, these findings present new data that allow us to study the initial effects of inflammatory stimulation on blood-brain barrier disruption, cytokine activation, and metabolic pathway changes that drive the response and recovery of the barrier during continued inflammatory exposure.


Assuntos
Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Citocinas/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Claudina-5/metabolismo , Citocinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Interleucina-1beta/farmacologia , Dispositivos Lab-On-A-Chip , Lipopolissacarídeos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia , Proteína da Zônula de Oclusão-1/metabolismo
5.
Biomicrofluidics ; 9(5): 054124, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26576206

RESUMO

The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier.

6.
Biomed Microdevices ; 16(1): 91-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24065585

RESUMO

Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air plasma converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results indicate that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a 3-day storage in air, but remained significant for up to 3 weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60 % smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a 3-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems.


Assuntos
Dimetilpolisiloxanos/química , Gases/química , Técnicas de Cultura de Células , Difusão , Técnicas Analíticas Microfluídicas/instrumentação , Microfluídica/métodos , Oxirredução , Oxigênio/química , Permeabilidade , Poliestirenos/química , Dióxido de Silício/química , Propriedades de Superfície , Água/química
7.
IEEE Trans Biomed Eng ; 60(3): 682-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23380852

RESUMO

The sophistication and success of recently reported microfabricated organs-on-chips and human organ constructs have made it possible to design scaled and interconnected organ systems that may significantly augment the current drug development pipeline and lead to advances in systems biology. Physiologically realistic live microHuman (µHu) and milliHuman (mHu) systems operating for weeks to months present exciting and important engineering challenges such as determining the appropriate size for each organ to ensure appropriate relative organ functional activity, achieving appropriate cell density, providing the requisite universal perfusion media, sensing the breadth of physiological responses, and maintaining stable control of the entire system, while maintaining fluid scaling that consists of ~5 mL for the mHu and ~5 µL for the µHu. We believe that successful mHu and µHu systems for drug development and systems biology will require low-volume microdevices that support chemical signaling, microfabricated pumps, valves and microformulators, automated optical microscopy, electrochemical sensors for rapid metabolic assessment, ion mobility-mass spectrometry for real-time molecular analysis, advanced bioinformatics, and machine learning algorithms for automated model inference and integrated electronic control. Toward this goal, we are building functional prototype components and are working toward top-down system integration.


Assuntos
Órgãos Artificiais , Engenharia Biomédica , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Engenharia Biomédica/instrumentação , Engenharia Biomédica/métodos , Humanos , Biologia de Sistemas/instrumentação
8.
Stem Cell Res Ther ; 4 Suppl 1: S18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24564885

RESUMO

The blood-brain barrier (BBB) dynamically controls exchange between the brain and the body, but this interaction cannot be studied directly in the intact human brain or sufficiently represented by animal models. Most existing in vitro BBB models do not include neurons and glia with other BBB elements and do not adequately predict drug efficacy and toxicity. Under the National Institutes of Health Microtissue Initiative, we are developing a three-dimensional, multicompartment, organotypic microphysiological system representative of a neurovascular unit of the brain. The neurovascular unit system will serve as a model to study interactions between the central nervous system neurons and the cerebral spinal fluid (CSF) compartment, all coupled to a realistic blood-surrogate supply and venous return system that also incorporates circulating immune cells and the choroid plexus. Hence all three critical brain barriers will be recapitulated: blood-brain, brain-CSF, and blood-CSF. Primary and stem cell-derived human cells will interact with a variety of agents to produce critical chemical communications across the BBB and between brain regions. Cytomegalovirus, a common herpesvirus, will be used as an initial model of infections regulated by the BBB. This novel technological platform, which combines innovative microfluidics, cell culture, analytical instruments, bioinformatics, control theory, neuroscience, and drug discovery, will replicate chemical communication, molecular trafficking, and inflammation in the brain. The platform will enable targeted and clinically relevant nutritional and pharmacologic interventions for or prevention of such chronic diseases as obesity and acute injury such as stroke, and will uncover potential adverse effects of drugs. If successful, this project will produce clinically useful technologies and reveal new insights into how the brain receives, modifies, and is affected by drugs, other neurotropic agents, and diseases.


Assuntos
Encéfalo/metabolismo , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Líquido Cefalorraquidiano/fisiologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/toxicidade
9.
Lab Chip ; 12(21): 4560-8, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22964798

RESUMO

We have developed a novel, portable, gravity-fed, microfluidics-based platform suitable for optical interrogation of long-term organotypic cell culture. This system is designed to provide convenient control of cell maintenance, nutrients, and experimental reagent delivery to tissue-like cell densities housed in a transparent, low-volume microenvironment. To demonstrate the ability of our Thick-Tissue Bioreactor (TTB) to provide stable, long-term maintenance of high-density cellular arrays, we observed the morphogenic growth of human mammary epithelial cell lines, MCF-10A and their invasive variants, cultured under three-dimensional (3D) conditions inside our system. Over the course of 21 days, these cells typically develop into hollow "mammospheres" if cultured in standard 3D Matrigel. This complex morphogenic process requires alterations in a variety of cellular functions, including degradation of extracellular matrix that is regulated by cell-produced matrix proteinases. For our "drug" delivery testing and validation experiments we have introduced proteinase inhibitors into the fluid supply system, and we observed both reduced proteinase activity and inhibited cellular morphogenesis. The size inhibition results correlated well with the overall proteinase activities of the tested cells.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Sistemas de Liberação de Medicamentos , Células Epiteliais/efeitos dos fármacos , Técnicas Analíticas Microfluídicas/métodos , Inibidores de Proteases/farmacologia , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Docetaxel , Células Epiteliais/enzimologia , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Peptídeo Hidrolases/metabolismo , Relação Estrutura-Atividade , Taxoides/farmacologia
10.
Biomed Microdevices ; 13(5): 837-46, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21710371

RESUMO

Morphogenesis is a fundamental process by which new blood vessels are formed during angiogenesis. The ability to control angiogenesis would lead to improvements in tissue engineering constructions; indeed, the study of angiogenesis has numerous clinical applications, for example, in the investigation of metastatic cancer, peripheral and coronary vascular disease, and wound healing. Conventional in vitro organotypic cell culture approaches to these studies are limited primarily by their reliance on microvascular vessel formation through a random process of morphogenesis that lacks the spatial reproducibility and orientation needed for high-throughput drug testing. We have developed a bioreactor system for scaffold-guided tubulogenesis coupled with 3-D organotypic culture to spatially control vessel formation and its orientation. To create microchannels to guide microvessel formation, we fabricated rigid scaffolds using photolithography and light curing epoxy, and soft scaffolds formed by a polydimethylsiloxane (PDMS) stamp directly into collagen. Scaffolds seeded with dermal microvascular endothelial cells were placed between gelled layers of collagen containing dermal fibroblasts within a Transwell filter system and cultured for up to 2 weeks to allow for vessel maturation. Morphological analysis of thin tissue sections following standard histology and immunohistochemical detection of endothelial cells, fibroblasts, and basement membrane confirmed vessel formation along the microchannel walls with either scaffold. This system may also provide a means to explore revascularization within decellularized extracellular matrices, the culture of microvessel networks with controlled geometries, and possibly the spatial guidance of angiogenesis for interfacing with an external microfluidic supply network. As a new tool for guided angiogenesis, our approach introduces new possibilities for identification of anti-angiogenic therapeutics.


Assuntos
Endotélio Vascular/citologia , Microvasos/crescimento & desenvolvimento , Alicerces Teciduais , Membrana Basal , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Colágeno/química , Dimetilpolisiloxanos/química , Fibroblastos , Humanos , Microvasos/citologia , Morfogênese , Reprodutibilidade dos Testes , Propriedades de Superfície
11.
J Vis Exp ; (39)2010 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-20440259

RESUMO

Microbial growth and transport in porous media have important implications for the quality of groundwater and surface water, the recycling of nutrients in the environment, as well as directly for the transmission of pathogens to drinking water supplies. Natural porous media is composed of an intricate physical topology, varied surface chemistries, dynamic gradients of nutrients and electron acceptors, and a patchy distribution of microbes. These features vary substantially over a length scale of microns, making the results of macro-scale investigations of microbial transport difficult to interpret, and the validation of mechanistic models challenging. Here we demonstrate how simple microfluidic devices can be used to visualize microbial interactions with micro-structured habitats, to identify key processes influencing the observed phenomena, and to systematically validate predictive models. Simple, easy-to-use flow cells were constructed out of the transparent, biocompatible and oxygen-permeable material poly(dimethyl siloxane). Standard methods of photolithography were used to make micro-structured masters, and replica molding was used to cast micro-structured flow cells from the masters. The physical design of the flow cell chamber is adaptable to the experimental requirements: microchannels can vary from simple linear connections to complex topologies with feature sizes as small as 2 microm. Our modular EcoChip flow cell array features dozens of identical chambers and flow control by a gravity-driven flow module. We demonstrate that through use of EcoChip devices, physical structures and pressure heads can be held constant or varied systematically while the influence of surface chemistry, fluid properties, or the characteristics of the microbial population is investigated. Through transport experiments using a non-pathogenic, green fluorescent protein-expressing Vibrio bacterial strain, we illustrate the importance of habitat structure, flow conditions, and inoculums size on fundamental transport phenomena, and with real-time particle-scale observations, demonstrate that microfluidics offer a compelling view of a hidden world.


Assuntos
Técnicas Microbiológicas/instrumentação , Técnicas Microbiológicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Vibrio/fisiologia , Dimetilpolisiloxanos/química , Ecossistema , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/biossíntese , Vibrio/crescimento & desenvolvimento , Vibrio/metabolismo
12.
Biomed Microdevices ; 12(1): 135-44, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19859812

RESUMO

We describe a simple and reliable fabrication method for producing multiple, manually activated microfluidic control valves in polydimethylsiloxane (PDMS) devices. These screwdriver-actuated valves reside directly on the microfluidic chip and can provide both simple on/off operation as well as graded control of fluid flow. The fabrication procedure can be easily implemented in any soft lithography lab and requires only two specialized tools-a hot-glue gun and a machined brass mold. To facilitate use in multi-valve fluidic systems, the mold is designed to produce a linear tape that contains a series of plastic rotary nodes with small stainless steel machine screws that form individual valves which can be easily separated for applications when only single valves are required. The tape and its valves are placed on the surface of a partially cured thin PDMS microchannel device while the PDMS is still on the soft-lithographic master, with the master providing alignment marks for the tape. The tape is permanently affixed to the microchannel device by pouring an over-layer of PDMS, to form a full-thickness device with the tape as an enclosed underlayment. The advantages of these Tape Underlayment Rotary-Node (TURN) valves include parallel fabrication of multiple valves, low risk of damaging a microfluidic device during valve installation, high torque, elimination of stripped threads, the capabilities of TURN hydraulic actuators, and facile customization of TURN molds. We have utilized these valves to control microfluidic flow, to control the onset of molecular diffusion, and to manipulate channel connectivity. Practical applications of TURN valves include control of loading and chemokine release in chemotaxis assay devices, flow in microfluidic bioreactors, and channel connectivity in microfluidic devices intended to study competition and predator/prey relationships among microbes.


Assuntos
Análise de Injeção de Fluxo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Rotação
13.
Science ; 317(5845): 1732-6, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17885132

RESUMO

Free-solution, label-free molecular interactions were investigated with back-scattering interferometry in a simple optical train composed of a helium-neon laser, a microfluidic channel, and a position sensor. Molecular binding interactions between proteins, ions and protein, and small molecules and protein, were determined with high dynamic range dissociation constants (Kd spanning six decades) and unmatched sensitivity (picomolar Kd's and detection limits of 10,000s of molecules). With this technique, equilibrium dissociation constants were quantified for protein A and immunoglobulin G, interleukin-2 with its monoclonal antibody, and calmodulin with calcium ion Ca2+, a small molecule inhibitor, the protein calcineurin, and the M13 peptide. The high sensitivity of back-scattering interferometry and small volumes of microfluidics allowed the entire calmodulin assay to be performed with 200 picomoles of solute.


Assuntos
Interferometria/métodos , Ligação Proteica , Sequência de Aminoácidos , Animais , Calcineurina/química , Cálcio/química , Calmodulina/química , Dimetilpolisiloxanos , Humanos , Imunoglobulina G/química , Cinética , Dados de Sequência Molecular , Quinase de Cadeia Leve de Miosina/química , Fragmentos de Peptídeos/química , Coelhos , Refratometria , Silicones , Soluções
15.
J Am Chem Soc ; 126(50): 16659-64, 2004 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-15600372

RESUMO

Quantification of protein-protein and ligand-substrate interactions is central to understanding basic cellular function and for evaluating therapeutics. To mimic biological conditions, such studies are best executed without modifying the proteins or ligands (i.e., label-free). While tools for label-free assays exist, they have limitations making them difficult to fully integrate into microfluidic devices. Furthermore, it has been problematic to reduce detection volumes for on-channel universal analyte quantification without compromising sensitivity, as needed in label-free methods. Here we show how backscattering interferometry in rectangular channels (BIRC) facilitates label-free studies within picoliter volumes. The simple and unique optical train was based on rectangular microfluidic channels molded in poly(dimethylsiloxane) and low-power coherent radiation. Quantification of irreversible streptavidin-biotin binding and reversible protein A-human IgG Fc molecular interactions in a 225 pL detection volume was carried out label-free and noninvasively. Detection limits of 47 x 10(-15) mol of biotin reacted with surface-immobilized streptavidin were achieved. In the case of reversible interactions of protein A and the Fc fragment of human IgG, detection limits were determined to be 2 x 10(-15) mol of IgG Fc. These experiments demonstrate for the first time that (1) high-sensitivity universal solute quantification is possible using interferometry performed within micrometer-sized channels formed in inexpensive PDMS chips, (2) label-free reversible molecular interaction can be studied with femtomoles of solute, and (3) BIRC has the potential to quantify binding affinities in a high-throughput format.


Assuntos
Microscopia de Interferência/métodos , Nanotecnologia/métodos , Análise Serial de Proteínas/métodos , Proteínas/análise , Biotina/química , Dimetilpolisiloxanos/química , Imunoglobulina G/análise , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Microscopia de Força Atômica , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Sensibilidade e Especificidade , Silicones/química , Proteína Estafilocócica A/análise , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Estreptavidina/química
16.
Electrophoresis ; 25(21-22): 3805-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15565690

RESUMO

The ability to measure fluid velocity within picoliter volumes or on-chip noninvasively, is important toward fully realizing the potential of microfluidics and micrototal analysis systems, particularly in applications such as micro-high-performance liquid chromatography (HPLC) or in metering mixing where the flow rate must be quantified. Additionally, these measurements need to be performed directly on moving fluids in a noninvasive fashion. We presented here the proof of principle experiments showing nonintrusive fluid flow measurements can be accomplished on-chip using a pump and probe configuration with backscattering interferometry. The on-chip interferometric backscatter detector (OCIBD) is based on a fiber-coupled HeNe laser that illuminates a portion of an isotropically etched 40 microm radius channel and a position sensitive transducer to measure fringe pattern shifts. An infrared laser with a mechanical shutter is used to heat a section of a flowing volume and the resulting refractive index (RI) change is detected with the OCIBD downstream as a time-dependent RI perturbation. Fluid velocity is quantified as changes in the phase difference between the shutter signal and the OCIBD detected signal in the Fourier domain. The experiments are performed in the range of 3-6 microL/h with 3sigma detection limits determined to be 0.127 nL/s. Additionally, the RI response of the system is calibrated using temperature changes as well as glycerol solutions.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Microfluídica/instrumentação , Desenho de Equipamento , Interferometria , Lasers , Temperatura
17.
Electrophoresis ; 23(5): 809-12, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11891716

RESUMO

A new method of fringe interrogation based on Fourier analysis was implemented and tested for a capillary polarimetry detector. It has significant advantages over the previously employed depth of modulation (DOM) approach, including speed and alignment insensitivity. The new and old methods were compared using a set of interference fringes typically used to facilitate nanoliter volume polarimetric determinations. Polarimetric response was calculated with both methods over the range from 0 degrees to 180 degrees. The results were found to be in good agreement with Malus Law and indicate that an fast Fourier transform (fft) could be used for real-time capillary scale polarimetry in a probe volume of 40 nL.


Assuntos
Eletroforese Capilar/métodos , Análise de Fourier , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...