Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(8)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37627599

RESUMO

The development of liver fibrosis is one of the most severe and life-threatening outcomes of chronic liver disease (CLD). For targeted therapy of CLD, it is highly needed to reveal molecular targets for normalizing metabolic processes impaired in damaged liver and associated with fibrosis. In this study, we investigated the morphological and biochemical changes in rat liver models of fibrosis induced by chronic administration of thioacetamide, carbon tetrachloride, bile duct ligation (BDL), and ischemia/reperfusion (I/R), with a specific focus on carbohydrate and energy metabolism. Changes in the levels of substrates and products, as well as enzyme activities of the major glucose metabolic pathways (glycolysis, glucuronidation, and pentose phosphate pathway) were examined in rat liver tissue after injury. We examined key markers of oxidative energy metabolism, such as the activity of the Krebs cycle enzymes, and assessed mitochondrial respiratory activity. In addition, pro- and anti-oxidative status was assessed in fibrotic liver tissue. We found that 6 weeks of exposure to thioacetamide, carbon tetrachloride, BDL or I/R resulted in a decrease in the activity of glycolytic enzymes, retardation of mitochondrial respiration, elevation of glucuronidation, and activation of pentose phosphate pathways, accompanied by a decrease in antioxidant activity and the onset of oxidative stress in rat liver. Resemblance and differences in the changes in the fibrosis models used are described, including energy metabolism alterations and antioxidant status in the used fibrosis models. The least pronounced changes in glucose metabolism and mitochondrial functions in the I/R and thioacetamide models were associated with the least advanced fibrosis. Ultimately, liver fibrosis significantly altered the metabolic profile in liver tissue and the flux of glucose metabolic pathways, which could be the basis for targeted therapy of liver fibrosis in CLD caused by toxic, cholestatic, or I/R liver injury.

2.
Front Microbiol ; 14: 1203243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342567

RESUMO

In yeast, multiple (pleiotropic) drug resistance (MDR) transporters efflux xenobiotics from the cytoplasm to the environment. Additionally, upon the accumulation of xenobiotics in the cells, MDR genes are induced. At the same time, fungal cells can produce secondary metabolites with physico-chemical properties similar to MDR transporter substrates. Nitrogen limitation in yeast Saccharomyces cerevisiae leads to the accumulation of phenylethanol, tryptophol, and tyrosol, which are products of aromatic amino acid catabolism. In this study, we investigated whether these compounds could induce or inhibit MDR in yeast. Double deletion of PDR1 and PDR3 genes, which are transcription factors that upregulate the expression of PDR genes, reduced yeast resistance to high concentrations of tyrosol (4-6 g/L) but not to the other two tested aromatic alcohols. PDR5 gene, but not other tested MDR transporter genes (SNQ2, YOR1, PDR10, PDR15) contributed to yeast resistance to tyrosol. Tyrosol inhibited the efflux of rhodamine 6G (R6G), a substrate for MDR transporters. However, preincubating yeast cells with tyrosol induced MDR, as evidenced by increased Pdr5-GFP levels and reduced yeast ability to accumulate Nile red, another fluorescent MDR-transporter substrate. Moreover, tyrosol inhibited the cytostatic effect of clotrimazole, the azole antifungal. Our results demonstrate that a natural secondary metabolite can modulate yeast MDR. We speculate that intermediates of aromatic amino acid metabolites coordinate cell metabolism and defense mechanisms against xenobiotics.

3.
Front Microbiol ; 13: 816622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401495

RESUMO

In mitochondria, a small protein IF1 suppresses the hydrolytic activity of ATP synthase and presumably prevents excessive ATP hydrolysis under conditions of energy deprivation. In yeast Saccharomyces cerevisiae, IF1 homologs are encoded by two paralogous genes: INH1 and STF1. INH1 expression is known to aggravate the deleterious effects of mitochondrial DNA (mtDNA) depletion. Surprisingly, no beneficial effects of INH1 and STF1 were documented for yeast so far, and the functions of INH1 and STF1 in wild type cells are unclear. Here, we put forward a hypothesis that INH1 and STF1 bring advantage during the fast start of proliferation after reentry into exponential growth from post-diauxic or stationary phases. We found that yeast cells increase the concentration of both proteins in the post-diauxic phase. Post-diauxic phase yeast cells formed two subpopulations distinct in Inh1p and Stf1p concentrations. Upon exit from the post-diauxic phase cells with high level of Inh1-GFP started growing earlier than cells devoid of Inh1-GFP. However, double deletion of INH1 and STF1 did not increase the lag period necessary for stationary phase yeast cells to start growing after reinoculation into the fresh medium. These results point to a redundancy of the mechanisms preventing uncontrolled ATP hydrolysis during energy deprivation.

4.
Biochim Biophys Acta Bioenerg ; 1863(5): 148544, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35331734

RESUMO

Proton-translocating FOF1 ATP synthase (F-ATPase) couples ATP synthesis or hydrolysis to transmembrane proton transport in bacteria, chloroplasts, and mitochondria. The primary function of the mitochondrial FOF1 is ATP synthesis driven by protonmotive force (pmf) generated by the respiratory chain. However, when pmf is low or absent (e.g. during anoxia), FOF1 consumes ATP and functions as a proton-pumping ATPase. Several regulatory mechanisms suppress the ATPase activity of FOF1 at low pmf. In yeast mitochondria they include special inhibitory proteins Inh1p and Stf1p, and non-competitive inhibition of ATP hydrolysis by MgADP (ADP-inhibition). Presumably, these mechanisms help the cell to preserve the ATP pool upon membrane de-energization. However, no direct evidence was presented to support this hypothesis so far. Here we report that a point mutation Q263L in subunit beta of Saccharomyces cerevisiae ATP synthase significantly attenuated ADP-inhibition of the enzyme without major effect on the rate of ATP production by mitochondria. The mutation also decreased the sensitivity of the enzyme ATPase activity to azide. Similar effects of the corresponding mutations were observed in earlier studies in bacterial enzymes. This observation indicates that the molecular mechanism of ADP-inhibition is probably the same in mitochondrial and in bacterial FOF1. The mutant yeast strain had lower growth rate and had a longer lag period preceding exponential growth phase when starved cells were transferred to fresh growth medium. However, upon the loss of mitochondrial DNA (ρ0) the ßQ263L mutation effect was reversed: the ßQ263L ρ0 mutant grew faster than the wild-type ρ0 yeast. The results suggest that ADP-inhibition might play a role in prevention of wasteful ATP hydrolysis in the mitochondrial matrix.


Assuntos
Adenosina Trifosfatases , Saccharomyces cerevisiae , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , ATPases Translocadoras de Prótons , Prótons , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Biomolecules ; 10(9)2020 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962296

RESUMO

Chemicals inducing a mild decrease in the ATP/ADP ratio are considered as caloric restriction mimetics as well as treatments against obesity. Screening for such chemicals in animal model systems requires a lot of time and labor. Here, we present a system for the rapid screening of non-toxic substances causing such a de-energization of cells. We looked for chemicals allowing the growth of yeast lacking trehalose phosphate synthase on a non-fermentable carbon source in the presence of glucose. Under such conditions, the cells cannot grow because the cellular phosphate is mostly being used to phosphorylate the sugars in upper glycolysis, while the biosynthesis of bisphosphoglycerate is blocked. We reasoned that by decreasing the ATP/ADP ratio, one might prevent the phosphorylation of the sugars and also boost bisphosphoglycerate synthesis by providing the substrate, i.e., inorganic phosphate. We confirmed that a complete inhibition of oxidative phosphorylation alleviates the block. As our system includes a non-fermentable carbon source, only the chemicals that did not cause a complete block of mitochondrial ATP synthesis allowed the initial depletion of glucose followed by respiratory growth. Using this system, we found two novel compounds, dodecylmethyl diphenylamine (FS1) and diethyl (tetradecyl) phenyl ammonium bromide (Kor105), which possess a mild membrane-depolarizing activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Cátions/metabolismo , Glucose/metabolismo , Glucosiltransferases/metabolismo , Glicólise , Saccharomyces cerevisiae/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Ácidos Difosfoglicéricos/metabolismo , Glucosiltransferases/genética , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/metabolismo , Modelos Biológicos , Fosforilação Oxidativa , Consumo de Oxigênio , Fosfatos/metabolismo , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
6.
J Bioenerg Biomembr ; 52(5): 383-395, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808242

RESUMO

Pleiotropic drug resistance (PDR) plasma membrane transporters mediate xenobiotic efflux from the cells and thereby help pathogenic microorganisms to withstand antimicrobial therapies. Given that xenobiotic efflux is an energy-consuming process, cells with upregulated PDR can be sensitive to perturbations in cellular energetics. Protonophores dissipate proton gradient across the cellular membranes and thus increase ATP spendings to their maintenance. We hypothesised that chronic exposure of yeast cells to the protonophores can favour the selection of cells with inactive PDR. To test this, we measured growth rates of the wild type Saccharomyces cerevisiae and PDR-deficient Δpdr1Δpdr3 strains in the presence of protonophores carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), pentachlorophenol (PCP) and niclosamide (NCA). Although the protonophore-induced respiration rates of these two strains were similar, the PDR-deficient strain outperformed the control one in the growth rate on non-fermentable carbon source supplemented with low concentrations of FCCP. Thus, active PDR can be deleterious under conditions of partially uncoupled oxidative-phosphorylation. Furthermore, our results suggest that tested anionic protonophores are poor substrates of PDR-transporters. At the same time, protonophores imparted azole tolerance to yeasts, pointing that they are potent PDR inducers. Interestingly, protonophore PCP led to a persistent increase in the levels of a major ABC-transporter Pdr5p, while azole clotrimazole induced only a temporary increase. Together, our data provides an insight into the effects of the protonophores in the eukaryotes at the cellular level and support the idea that cells with activated PDR can be selected out upon conditions of energy limitations.


Assuntos
Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico
7.
Eur J Cell Biol ; 99(2-3): 151071, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32057484

RESUMO

The mitochondrial network structure dynamically adapts to cellular metabolic challenges. Mitochondrial depolarisation, particularly, induces fragmentation of the network. This fragmentation may be a result of either a direct regulation of the mitochondrial fusion machinery by transmembrane potential or an indirect effect of metabolic remodelling. Activities of ATP synthase and adenine nucleotide translocator (ANT) link the mitochondrial transmembrane potential with the cytosolic NTP/NDP ratio. Given that mitochondrial fusion requires cytosolic GTP, a decrease in the NTP/NDP ratio might also account for protonophore-induced mitochondrial fragmentation. For evaluating the contributions of direct and indirect mechanisms to mitochondrial remodelling, we assessed the morphology of the mitochondrial network in yeast cells with inhibited ANT. We showed that the repression of AAC2 (PET9), a major ANT gene in yeast, increases mitochondrial transmembrane potential. However, the mitochondrial network in this strain was fragmented. Meanwhile, AAC2 repression did not prevent mitochondrial fusion in zygotes; nor did it inhibit mitochondrial hyperfusion induced by Dnm1p inhibitor mdivi-1. These results suggest that the inhibition of ANT, rather than preventing mitochondrial fusion, facilitates mitochondrial fission. The protonophores were not able to induce additional mitochondrial fragmentation in an AAC2-repressed strain and in yeast cells with inhibited ATP synthase. Importantly, treatment with the ATP synthase inhibitor oligomycin A also induced mitochondrial fragmentation and hyperpolarization. Taken together, our data suggest that ATP/ADP translocation plays a crucial role in shaping of the mitochondrial network and exemplify that an increase in mitochondrial membrane potential does not necessarily oppose mitochondrial fragmentation.


Assuntos
Nucleotídeos de Adenina/genética , Sequência de Aminoácidos/genética , Translocação Genética/genética , Humanos , Dinâmica Mitocondrial
8.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864171

RESUMO

There are two superoxide dismutases in the yeast Saccharomyces cerevisiae-cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2 Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. IMPORTANCE: Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria.


Assuntos
Etanol/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Superóxido Dismutase/genética , Fatores de Transcrição/genética , Peróxido de Hidrogênio/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo
9.
FEMS Yeast Res ; 16(4)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27044313

RESUMO

ABC-transporters with broad substrate specificity are responsible for pathogenic yeast resistance to antifungal compounds. Here we asked whether highly hydrophobic chemicals with delocalized positive charge can be used to overcome the resistance. Such molecules efficiently penetrate the plasma membrane and accumulate inside the cells. We reasoned that these properties can convert an active efflux of the compounds into a futile cycle thus interfering with the extrusion of the antibiotics. To test this, we studied the effects of several alkylated rhodamines on the drug resistance of yeast Saccharomyces cerevisiae We found that octylrhodamine synergetically increases toxicity of Pdr5p substrate-clotrimazole, while the others were less effective. Next, we compared the contributions of three major pleiotropic ABC-transporters (Pdr5p, Yor1p, Snq2p) on the accumulation of the alkylated rhodamines. While all of the tested compounds were extruded by Pdr5p, Yor1p and Snq2p showed narrower substrate specificity. Interestingly, among the tested alkylated rhodamines, inactivation of Pdr5p had the strongest effect on the accumulation of octylrhodamine inside the cells, which is consistent with the fact that clotrimazole is a substrate of Pdr5p. As alkylated rhodamines were shown to be non-toxic on mice, our study makes them potential components of pharmacological antifungal compositions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antifúngicos/farmacologia , Compostos de Benzalcônio/farmacologia , Clotrimazol/farmacologia , Inibidores Enzimáticos/metabolismo , Rodaminas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Sinergismo Farmacológico , Viabilidade Microbiana/efeitos dos fármacos
10.
Biochem Biophys Res Commun ; 450(4): 1481-4, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25019981

RESUMO

Multiple drug resistance pumps are potential drug targets. Here we asked whether the lipophilic cation dodecyltriphenylphosphonium (C12TPP) can interfere with their functioning. First, we found that suppression of ABC transporter gene PDR5 increases the toxicity of C12TPP in yeast. Second, C12TPP appeared to prevent the efflux of rhodamine 6G - a fluorescent substrate of Pdr5p. Moreover, C12TPP increased the cytostatic effects of some other known Pdr5p substrates. The chemical nature of C12TPP suggests that after Pdr5p-driven extrusion the molecules return to the plasma membrane and then into the cytosol, thus effectively competing with other substrates of the pump.


Assuntos
Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Saccharomyces cerevisiae/genética
11.
PLoS One ; 8(4): e61902, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626747

RESUMO

Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H(+) ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores.


Assuntos
Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Ionóforos de Próton/farmacologia , Prótons , 2,4-Dinitrofenol/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Cátions , Fluoresceínas/metabolismo , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/química , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/antagonistas & inibidores , Plastoquinona/metabolismo , Ratos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
12.
Eur J Cell Biol ; 92(4-5): 169-74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23523087

RESUMO

Stressed Saccharomyces cerevisiae cells easily lose respiratory function due to deletions in mitochondrial DNA, and this increases their general stress resistance. Is the loss active? We found that erythromycin (an inhibitor of mitochondrial translation) prevents the loss in control cells but not in the ones expressing mitochondrially-encoded protein Var1 in the nucleus. Var1 is a component of mitochondrial ribosomes; it is hydrophilic, positively charged, and prone to aggregation. Addition of DNase altered Var1 content in a preparation of mitochondrial nucleoids. Our data indicate that Var1 physically interacts with mitochondrial DNA and under stress negatively regulates its maintenance.


Assuntos
Resposta ao Choque Térmico , Proteínas de Membrana/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Proteínas Ribossômicas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Aerobiose , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Eritromicina/farmacologia , Mitocôndrias/efeitos dos fármacos , Consumo de Oxigênio , Inibidores da Síntese de Proteínas/farmacologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
13.
J Biol Chem ; 286(20): 17831-40, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454507

RESUMO

A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C(12)R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H(+) ions was generated in the presence of C(12)R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C(12)R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C(12)R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C(12)R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease.


Assuntos
Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Rodaminas , Saccharomyces cerevisiae/metabolismo , Desacopladores , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ratos , Rodaminas/química , Rodaminas/farmacologia , Desacopladores/química , Desacopladores/farmacologia
14.
J Bioenerg Biomembr ; 43(2): 175-80, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21360288

RESUMO

Hydrophobic cations with delocalized charge are used to deliver drugs to mitochondria. However, micromolar concentrations of such compounds could be toxic due to their excessive accumulation in mitochondria. We studied possible pathophysiological effects of one such cation, i.e. dodecyltriphenylphosphonium (C(12)-TPP), in the yeast Saccharomyces cerevisiae. First, we found that C(12)-TPP induces high-amplitude mitochondrial swelling. The swelling can be prevented by addition of protonophorous uncoupler FCCP or antioxidant alpha-tocopherol, but not other tested antioxidants (N-acetylcysteine and Trolox). Second, FCCP prevents ROS-sensitive fluorescent dye (dichlorofluorescein diacetate) staining of yeast treated with C(12)-TPP. We also showed that all tested antioxidants partially restore the growth inhibited by C(12)-TPP. The latter points that ROS rather than the mitochondria swelling limit the growth rate.


Assuntos
Mitocôndrias/metabolismo , Compostos Organofosforados/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Mitocôndrias/genética , Saccharomyces cerevisiae/genética , Desacopladores/farmacologia
15.
Cell Biol Int ; 35(5): 431-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20942804

RESUMO

It was shown earlier that DNA damage induced by alkylating agent MMS (methyl methanesulfonate) results in formation of ROS (reactive oxygen species) in yeast cells. Here, we asked whether this ROS generation is favourable for the cells. It appeared that prooxidants rather than antioxidants stimulate the survival after MMS treatment. We found that positively charged detergents increase the survival via induction of H2O2 formation in the cells. Interestingly, prooxidants protected yeast cells from the moderate doses of MMS and enhanced the toxicity of relatively high ones. Prooxidants also protect the cells arrested in mitosis (nocodazole treatment), indicating that the protection is mostly due to ROS-mediated transcriptional stress-response rather than due to enrichment of cell culture with highly MMS-resistant G2/M cells. The comparison of the published expression profile responses to prooxidant and MMS treatments identifies a set of ROS-activated genes, which are likely to protect cells from the genotoxic stress.


Assuntos
Antioxidantes/metabolismo , Dano ao DNA , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
16.
Proc Natl Acad Sci U S A ; 107(2): 663-8, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20080732

RESUMO

A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H(+)-conducting fatty acid cycling mediated by penetrating cations such as 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C(12)TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (DeltapH) to a membrane potential (Deltapsi) of the Nernstian value (about 60 mV Deltapsi at DeltapH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C(12)TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H(2)O(2) formation. In intact yeast cells, C(12)TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization.


Assuntos
Cátions/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Senescência Celular , Citosol/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Hipotireoidismo/fisiopatologia , Cinética , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/fisiologia , Neoplasias/patologia , Obesidade/fisiopatologia , Oniocompostos/metabolismo , Compostos Organofosforados/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Prótons , Ratos , Espécies Reativas de Oxigênio/metabolismo
17.
Arch Microbiol ; 191(8): 675-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19536523

RESUMO

Amiodarone is a widely used antiarrhythmic drug. There is also evidence that amiodarone decreases multidrug resistance in human cell lines. In this paper, we have shown that amiodarone has similar effect on yeast, Saccharomyces cerevisiae, decreasing multiple drug resistance. Amiodarone stimulates the accumulation of ethidium bromide by inhibiting its efflux from the cells. The effect of amiodarone is much stronger on wild-type cells compared to the mutant with inactivated ABC-transporters. Interestingly, the action of amiodarone is additive with the one of chloroquine, a known inhibitor of ABC-transporters. We speculate that these findings could help in the development of antifungal drug mixes.


Assuntos
Amiodarona/farmacologia , Antifúngicos/farmacologia , Farmacorresistência Fúngica Múltipla/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Etídio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
J Cell Biol ; 168(2): 257-69, 2005 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-15657396

RESUMO

Although programmed cell death (PCD) is extensively studied in multicellular organisms, in recent years it has been shown that a unicellular organism, yeast Saccharomyces cerevisiae, also possesses death program(s). In particular, we have found that a high doses of yeast pheromone is a natural stimulus inducing PCD. Here, we show that the death cascades triggered by pheromone and by a drug amiodarone are very similar. We focused on the role of mitochondria during the pheromone/amiodarone-induced PCD. For the first time, a functional chain of the mitochondria-related events required for a particular case of yeast PCD has been revealed: an enhancement of mitochondrial respiration and of its energy coupling, a strong increase of mitochondrial membrane potential, both events triggered by the rise of cytoplasmic [Ca2+], a burst in generation of reactive oxygen species in center o of the respiratory chain complex III, mitochondrial thread-grain transition, and cytochrome c release from mitochondria. A novel mitochondrial protein required for thread-grain transition is identified.


Assuntos
Amiodarona/farmacologia , Apoptose/fisiologia , Mitocôndrias/fisiologia , Feromônios/farmacologia , Saccharomyces cerevisiae/fisiologia , Antifúngicos/farmacologia , Antimicina A/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Citocromos c/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Cinética , Fator de Acasalamento , Potenciais da Membrana/efeitos dos fármacos , Metacrilatos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Modelos Biológicos , Oxigênio/metabolismo , Peptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiazóis/farmacologia
19.
Biochim Biophys Acta ; 1557(1-3): 109-17, 2003 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-12615354

RESUMO

Many apoptotic signals are known to induce release to cytosol of cytochrome c, a small mitochondrial protein with positively charged amino acid residues dominating over negatively charged ones. On the other hand, in this group, it was shown that prothymosin alpha (PT), a small nuclear protein where 53 of 109 amino acid residues are negatively charged, is truncated to form a protein of 99 amino acid residues which accumulates in cytosol during apoptosis [FEBS Lett. 467 (2000) 150]. It was suggested that positively charged cytochrome c and negatively charged truncated prothymosin alpha (tPT), when meeting in cytosol, can interact with each other. In this paper, such an interaction is shown. (1) Formation of cytochrome cz.ccirf;tPT complex is demonstrated by a blot-overlay assay. (2) Analytical centrifugation of solution containing cytochrome c and tPT reveals formation of complexes of molecular masses higher than those of these proteins. The masses increase when the cytochrome c/tPT ratio increases. High concentration of KCl prevents the complex formation. (3) In the complexes formed, cytochrome c becomes autoxidizable; its reduction by superoxide or ascorbate as well as its operation as electron carrier between the outer and inner mitochondrial membranes appear to be inhibited. (4) tPT inhibits cytochrome c oxidation by H(2)O(2), catalyzed by peroxidase. Thus, tPT abolishes all antioxidant functions of cytochrome c which, in the presence of tPT, becomes in fact a pro-oxidant. A possible role of tPT in the development of reactive oxygen species- and cytochrome c-mediated apoptosis is discussed.


Assuntos
Grupo dos Citocromos c/química , Precursores de Proteínas/química , Timosina/análogos & derivados , Timosina/química , Animais , Caspase 3 , Caspases , Grupo dos Citocromos c/metabolismo , Escherichia coli/metabolismo , Peróxido de Hidrogênio , Mitocôndrias Hepáticas/metabolismo , Oxirredução , Peroxidase/antagonistas & inibidores , Ácido Poliglutâmico , Precursores de Proteínas/biossíntese , Precursores de Proteínas/metabolismo , Ratos , Superóxidos , Timosina/biossíntese , Timosina/metabolismo , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...