Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630555

RESUMO

PURPOSE: Osimertinib is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) indicated for the treatment of EGFR mutated (EGFRm)-driven lung adenocarcinomas. Osimertinib significantly improves progression-free survival in first-line treated patients with EGFRm advanced NSCLC. Despite the durable disease control, the majority of patients receiving osimertinib eventually develop disease progression. EXPERIMENTAL DESIGN: ctDNA profiling analysis on-progression plasma samples from patients treated with osimertinib in both first (Phase 3, FLAURA trial) and second-line trials (Phase 3, AURA3 trial) revealed a high prevalence of PIK3CA/AKT/PTEN alterations. In vitro and in vivo evidence using CRISPR engineered NSCLC cell lines and PXD models support a functional role for PIK3CA and PTEN mutations in the development of osimertinib resistance. RESULTS: These alterations are functionally relevant as EGFRm NSCLC cells with engineered PIK3CA/AKT/PTEN alterations develop resistance to osimertinib and can be re-sensitized by treatment with the combination of osimertinib and the AKT inhibitor capivasertib. Moreover, xenograft and PDX in vivo models with PIK3CA/AKT/PTEN alterations display limited sensitivity to osimertinib relative to models without alteration, and in these double mutant models capivasertib and osimertinib combination elicits an improved anti-tumor effect versus osimertinib alone. CONCLUSIONS: Together, this approach offers a potential treatment strategy for patients with EGFRm-driven NSCLC that have a sub-optimal response, or develop resistance, to osimertinib through PIK3CA/AKT/PTEN alterations.

2.
Clin Pharmacol Ther ; 115(2): 349-360, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38010260

RESUMO

This exploratory, post hoc analysis aimed to model circulating tumor DNA (ctDNA) dynamics and predict disease progression in patients with treatment-naïve locally advanced/metastatic epidermal growth factor receptor mutation (EGFRm)-positive non-small cell lung cancer, from the FLAURA trial (NCT02296125). Patients were randomized 1:1 and received osimertinib 80 mg once daily (q.d.) or comparator EGFR-TKIs (gefitinib 250 mg q.d. or erlotinib 150 mg q.d.). Plasma was collected at baseline and multiple timepoints until treatment discontinuation. Patients with Response Evaluation Criteria in Solid Tumors (RECIST) imaging data and detectable EGFR mutations (Ex19del/L858R) at baseline and ≥ 3 additional timepoints were evaluable. Joint modeling was conducted to characterize the relationship between longitudinal changes in ctDNA and probability of progression-free survival (PFS). A Bayesian joint model of ctDNA and PFS was developed solving differential equations with the ctDNA dynamics and the PFS time-to-event probability. Of 556 patients, 353 had detectable ctDNA at baseline. Evaluable patients (with available imaging and ≥ 3 additional timepoints, n = 320; ctDNA set) were divided into training (n = 259) and validation (n = 61) sets. In the validation set, the model predicted a median PFS of 17.7 months (95% confidence interval (CI): 11.9-28.3) for osimertinib (n = 23) and 9.1 months (95% CI: 6.3-14.8) for comparator (n = 38), consistent with observed RECIST PFS (16.4 months and 9.7, respectively). The model demonstrates that EGFRm ctDNA dynamics can predict the risk of disease progression in this patient population and could be used to predict RECIST-defined disease progression.


Assuntos
Acrilamidas , Compostos de Anilina , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Antineoplásicos/uso terapêutico , Teorema de Bayes , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/uso terapêutico , Progressão da Doença , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases
4.
Clin Cancer Res ; 29(17): 3340-3351, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379430

RESUMO

PURPOSE: Plasma circulating tumor DNA (ctDNA) analysis is used for genotyping advanced non-small cell lung cancer (NSCLC); monitoring dynamic ctDNA changes may be used to predict outcomes. PATIENTS AND METHODS: This was a retrospective, exploratory analysis of two phase III trials [AURA3 (NCT02151981), FLAURA (NCT02296125)]. All patients had EGFR mutation-positive (EGFRm; ex19del or L858R) advanced NSCLC; AURA3 also included T790M-positive NSCLC. Osimertinib (FLAURA, AURA3), or comparator EGFR-tyrosine kinase inhibitor (EGFR-TKI; gefitinib/erlotinib; FLAURA), or platinum-based doublet chemotherapy (AURA3) was given. Plasma EGFRm was analyzed at baseline and Weeks 3/6 by droplet digital PCR. Outcomes were assessed by detectable/non-detectable baseline plasma EGFRm and plasma EGFRm clearance (non-detection) at Weeks 3/6. RESULTS: In AURA3 (n = 291), non-detectable versus detectable baseline plasma EGFRm had longer median progression-free survival [mPFS; HR, 0.48; 95% confidence interval (CI), 0.33-0.68; P < 0.0001]. In patients with Week 3 clearance versus non-clearance (n = 184), respectively, mPFS (months; 95% CI) was 10.9 (8.3-12.6) versus 5.7 (4.1-9.7) with osimertinib and 6.2 (4.0-9.7) versus 4.2 (4.0-5.1) with platinum-pemetrexed. In FLAURA (n = 499), mPFS was longer with non-detectable versus detectable baseline plasma EGFRm (HR, 0.54; 95% CI, 0.41-0.70; P < 0.0001). For Week 3 clearance versus non-clearance (n = 334), respectively, mPFS was 19.8 (15.1 to not calculable) versus 11.3 (9.5-16.5) with osimertinib and 10.8 (9.7-11.1) versus 7.0 (5.6-8.3) with comparator EGFR-TKI. Similar outcomes were observed by Week 6 clearance/non-clearance. CONCLUSIONS: Plasma EGFRm analysis as early as 3 weeks on-treatment has the potential to predict outcomes in EGFRm advanced NSCLC.

5.
Nat Commun ; 14(1): 1070, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849494

RESUMO

Osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), potently and selectively inhibits EGFR-TKI-sensitizing and EGFR T790M resistance mutations. In the Phase III FLAURA study (NCT02296125), first-line osimertinib improved outcomes vs comparator EGFR-TKIs in EGFRm advanced non-small cell lung cancer. This analysis identifies acquired resistance mechanisms to first-line osimertinib. Next-generation sequencing assesses circulating-tumor DNA from paired plasma samples (baseline and disease progression/treatment discontinuation) in patients with baseline EGFRm. No EGFR T790M-mediated acquired resistance are observed; most frequent resistance mechanisms are MET amplification (n = 17; 16%) and EGFR C797S mutations (n = 7; 6%). Future research investigating non-genetic acquired resistance mechanisms is warranted.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
J Clin Oncol ; 41(14): 2493-2502, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36809050

RESUMO

PURPOSE: Metastatic papillary renal cancer (PRC) has poor outcomes, and new treatments are required. There is a strong rationale for investigating mesenchymal epithelial transition receptor (MET) and programmed cell death ligand-1 (PD-L1) inhibition in this disease. In this study, the combination of savolitinib (MET inhibitor) and durvalumab (PD-L1 inhibitor) is investigated. METHODS: This single-arm phase II trial explored durvalumab (1,500 mg once every four weeks) and savolitinib (600 mg once daily; ClinicalTrials.gov identifier: NCT02819596). Treatment-naïve or previously treated patients with metastatic PRC were included. A confirmed response rate (cRR) of > 50% was the primary end point. Progression-free survival, tolerability, and overall survival were secondary end points. Biomarkers were explored from archived tissue (MET-driven status). RESULTS: Forty-one patients treated with advanced PRC were enrolled into this study and received at least one dose of study treatment. The majority of patients had Heng intermediate risk score (n = 26 [63%]). The cRR was 29% (n = 12; 95% CI, 16 to 46), and the trial therefore missed the primary end point. The cRR increased to 53% (95% CI, 28 to 77) in MET-driven patients (n/N = 9/27) and was 33% (95% CI, 17 to 54) in PD-L1-positive tumors (n/N = 9/27). The median progression-free survival was 4.9 months (95% CI, 2.5 to 10.0) in the treated population and 12.0 months (95% CI, 2.9 to 19.4) in MET-driven patients. The median overall survival was 14.1 months (95% CI, 7.3 to 30.7) in the treated population and 27.4 months (95% CI, 9.3 to not reached [NR]) in MET-driven patients. Grade 3 and above treatment related adverse events occurred in 17 (41%) patients. There was 1 grade 5 treatment-related adverse event (cerebral infarction). CONCLUSION: The combination of savolitinib and durvalumab was tolerable and associated with high cRRs in the exploratory MET-driven subset.


Assuntos
Antígeno B7-H1 , Neoplasias Renais , Humanos , Neoplasias Renais/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
7.
Cancer Discov ; 13(1): 98-113, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36264123

RESUMO

MET-inhibitor and EGFR tyrosine kinase inhibitor (EGFR-TKI) combination therapy could overcome acquired MET-mediated osimertinib resistance. We present the final phase Ib TATTON (NCT02143466) analysis (Part B, n = 138/Part D, n = 42) assessing oral savolitinib 600 mg/300 mg once daily (q.d.) + osimertinib 80 mg q.d. in patients with MET-amplified, EGFR-mutated (EGFRm) advanced non-small cell lung cancer (NSCLC) and progression on prior EGFR-TKI. An acceptable safety profile was observed. In Parts B and D, respectively, objective response rates were 33% to 67% and 62%, and median progression-free survival (PFS) was 5.5 to 11.1 months and 9.0 months. Increased antitumor activity may occur with MET copy number ≥10. EGFRm circulating tumor DNA clearance on treatment predicted longer PFS in patients with detectable baseline ctDNA, while acquired resistance mechanisms to osimertinib + savolitinib were mediated by MET, EGFR, or KRAS alterations. SIGNIFICANCE: The savolitinib + osimertinib combination represents a promising therapy in patients with MET-amplified/overexpressed, EGFRm advanced NSCLC with disease progression on a prior EGFR-TKI. Acquired resistance mechanisms to this combination include those via MET, EGFR, and KRAS. On-treatment ctDNA dynamics can predict clinical outcomes and may provide an opportunity to inform earlier decision-making. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Compostos de Anilina/uso terapêutico , Receptores ErbB
8.
NPJ Precis Oncol ; 6(1): 95, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575215

RESUMO

Third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), including osimertinib, an irreversible EGFR-TKI, are important treatments for non-small cell lung cancer with EGFR-TKI sensitizing or EGFR T790M resistance mutations. While patients treated with osimertinib show clinical benefit, disease progression and drug resistance are common. Emergence of de novo acquired resistance from a drug tolerant persister (DTP) cell population is one mechanism proposed to explain progression on osimertinib and other targeted cancer therapies. Here we profiled osimertinib DTPs using RNA-seq and ATAC-seq to characterize the features of these cells and performed drug screens to identify therapeutic vulnerabilities. We identified several vulnerabilities in osimertinib DTPs that were common across models, including sensitivity to MEK, AURKB, BRD4, and TEAD inhibition. We linked several of these vulnerabilities to gene regulatory changes, for example, TEAD vulnerability was consistent with evidence of Hippo pathway turning off in osimertinib DTPs. Last, we used genetic approaches using siRNA knockdown or CRISPR knockout to validate AURKB, BRD4, and TEAD as the direct targets responsible for the vulnerabilities observed in the drug screen.

9.
Ther Adv Med Oncol ; 14: 17588359221079125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251316

RESUMO

INTRODUCTION: Osimertinib is a third-generation EGFR tyrosine kinase inhibitor (TKI) that is approved for the use of EGFR-mutant non-small cell lung cancer (NSCLC) patients. In this study, we investigated the acquired resistance mechanisms in NSCLC patients and patient-derived preclinical models. METHODS: Formalin-fixed paraffin-embedded tumor samples and plasma samples from 55 NSCLC patients who were treated with osimertinib were collected at baseline and at progressive disease (PD). Next-generation sequencing was performed in tumor and plasma samples using a 600-gene hybrid capture panel designed by AstraZeneca. Osimertinib-resistant cell lines and patient-derived xenografts and cells were generated and whole exome sequencing and RNA sequencing were performed. In vitro experiments were performed to functionally study the acquired mutations identified. RESULTS: A total of 55 patients and a total of 149 samples (57 tumor samples and 92 plasma samples) were analyzed, and among them 36 patients had matched pre- and post-treatment samples. EGFR C797S (14%) mutation was the most frequent EGFR-dependent mechanism identified in all available progression samples, followed by EGFR G824D (6%), V726M (3%), and V843I (3%). Matched pre- and post-treatment sample analysis revealed in-depth acquired mechanisms of resistance. EGFR C797S was still most frequent (11%) among EGFR-dependent mechanism, while among EGFR-independent mechanisms, PIK3CA, ALK, BRAF, EP300, KRAS, and RAF1 mutations were detected. Among Osimertinib-resistant cell lines and patient-derived models, we noted acquired mutations which were potentially targetable such as NRAS p.Q61K, in which resistance could be overcome with combination of osimertinib and trametinib. A patient-derived xenograft established from osimertinib-resistant patient revealed KRAS p.G12D mutation which could be overcome with combination of osimertinib, trametinib, and buparlisib. CONCLUSION: In this study, we explored the genetic profiles of osimertinib-resistant NSCLC patient samples using targeted deep sequencing. In vitro and in vivo models harboring osimertinib resistance revealed potential novel treatment strategies after osimertinib failure.

10.
Nat Commun ; 12(1): 1780, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741979

RESUMO

Advanced non-small-cell lung cancer (NSCLC) patients with EGFR T790M-positive tumours benefit from osimertinib, an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). Here we show that the size of the EGFR T790M-positive clone impacts response to osimertinib. T790M subclonality, as assessed by a retrospective NGS analysis of 289 baseline plasma ctDNA samples from T790M-positive advanced NSCLC patients from the AURA3 phase III trial, is associated with shorter progression-free survival (PFS), both in the osimertinib and the chemotherapy-treated patients. Both baseline and longitudinal ctDNA profiling indicate that the T790M subclonal tumours are enriched for PIK3CA alterations, which we demonstrate to confer resistance to osimertinib in vitro that can be partially reversed by PI3K pathway inhibitors. Overall, our results elucidate the impact of tumour heterogeneity on response to osimertinib in advanced stage NSCLC patients and could help define appropriate combination therapies in these patients.


Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Mutação de Sentido Incorreto , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , DNA Tumoral Circulante/análise , DNA Tumoral Circulante/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Receptores ErbB/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Estudos Retrospectivos
11.
Artigo em Inglês | MEDLINE | ID: mdl-32923890

RESUMO

PURPOSE: Some gastric cancers harbor MET gene amplifications that can be targeted by selective MET inhibitors to achieve tumor responses, but resistance eventually develops. Savolitinib, a selective MET inhibitor, is beneficial for treating patients with MET-driven gastric cancer. Understanding the resistance mechanisms is important for optimizing postfailure treatment options. PATIENTS AND METHODS: Here, we identified the mechanisms of acquired resistance to savolitinib in 3 patients with gastric cancer and MET-amplified tumors who showed a clinical response and then cancer progression. Longitudinal circulating tumor DNA (ctDNA) is useful for monitoring resistance during treatment and progression when rebiopsy cannot be performed. RESULTS: Using a next-generation sequencing 100-gene panel, we identified the target mechanisms of resistance MET D1228V/N/H and Y1230C mutations or high copy number MET gene amplifications that emerge when resistance to savolitinib develops in patients with MET-amplified gastric cancer. CONCLUSION: We demonstrated the utility of ctDNA in gastric cancer and confirmed this approach using baseline tumor tissue or rebiopsy.

12.
J Thorac Oncol ; 15(1): 50-61, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557536

RESUMO

INTRODUCTION: Osimertinib is the current recommended treatment for EGFR T790M-positive NSCLC after EGFR tyrosine kinase inhibitor therapy. However, resistance to osimertinib therapy is inevitably acquired after a period of effective treatment. We had a patient with EGFR L858R/T790M-positive NSCLC who initially responded to osimertinib therapy but eventually experienced development of resistance. Plasma cell-free DNA analysis revealed the occurrence of exon 16-skipping HER2, which may have resulted in the erb-b2 receptor tyrosine kinase 2 gene (HER2) splice variant HER2D16. HER2D16 has never been reported in lung cancer, and HER2D16-driven signaling is known to be regulated by Src kinase in breast cancer. We investigated the role of HER2D16 as an osimertinib-resistant mechanism. METHODS: We constructed and established H1975 cells stably expressing HER2D16. The dimeric formation of HER2D16 was tested by using nonreducing polyacrylamide gel electrophoresis. The effects of the study drugs on signaling transduction were examined by using Western blot. Synergistic effect was assessed by using the Chou-Talalay method. RESULTS: We found that HER2D16 can form a homodimer in NSCLC cells. HER2D16-expressing H1975 cells were resistant to osimertinib treatment. We also found that mutant EGFR and HER2D16 cooperated to activate downstream signaling for osimertinib resistance. In addition, cotreatment with osimertinib and an Src kinase inhibitor failed to reverse resistance, indicating that HER2D16-driven signaling in NSCLC did not occur through a canonical pathway. Finally, we revealed that the combination of osimertinib with the pan-HER small-molecule inhibitor afatinib could synergistically repress cell growth and signaling in H1975-HER2D16 cells. CONCLUSION: HER2D16 can contribute to osimertinib resistance through an Src-independent pathway. HER2D16 should be included in the molecular diagnosis panel for lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Éxons , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
13.
J Thorac Oncol ; 15(1): 138-143, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605792

RESUMO

INTRODUCTION: EGFR mutated (EGFRm) NSCLC tumors occasionally express programmed cell death ligand 1 (PD-L1), although frequency and clinical relevance are not fully characterized. We report PD-L1 expression in patients with EGFRm advanced NSCLC and association with clinical outcomes following treatment with osimertinib or comparator EGFR tyrosine kinase inhibitors in the FLAURA trial (phase III, NCT02296125). METHODS: Of 231 tissue blocks available from the screened population (including EGFRm-positive and -negative samples), 197 had sufficient tissue for PD-L1 testing using the SP263 (Ventana, Tucson, Arizona) immunohistochemical assay. Tumor cell (TC) staining thresholds of PD-L1 TC greater than or equal to 1%, TC greater than or equal to 25%, and TC greater than or equal to 50% were applied. Progression-free survival (PFS) was investigator-assessed, per Response Evaluation Criteria in Solid Tumor, version 1.1, according to PD-L1 expressors (TC ≥ 1%) or negatives (TC < 1%) in randomized patients. RESULTS: PD-L1 staining was successful in 193 of 197 patient formalin-fixed paraffin-embedded blocks; of these, 128 of 193 were EGFRm-positive and 106 of 128 patients were randomized to treatment (osimertinib: 54; comparator: 52). At the PD-L1 TC greater than or equal to 25% threshold, 8% (10 of 128) of EGFRm-positive tumors expressed PD-L1 versus 35% (23 of 65) of EGFRm-negative tumors. With the TC greater than or equal to 1% threshold, 51% (65 of 128) versus 68% (44 of 65) were mutation-positive and -negative, respectively, and with the TC greater than or equal to 50% threshold, 5% (7 of 128) versus 28% (18 of 65), were mutation-positive and -negative, respectively. For PD-L1 expressors (TC ≥ 1%), median PFS was 18.4 months with osimertinib and 6.9 months with comparator (hazard ratio = 0.30; 95% confidence interval: 0.15-0.60). For PD-L1-negative patients (TC < 1%), median PFS was 18.9 months with osimertinib and 10.9 months with comparator (hazard ratio = 0.37; 95% confidence interval: 0.17-0.74). CONCLUSIONS: Clinical benefit with osimertinib was unaffected by PD-L1 expression status.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Acrilamidas , Compostos de Anilina , Antineoplásicos/uso terapêutico , Apoptose , Antígeno B7-H1/genética , Antígeno B7-H1/uso terapêutico , Receptores ErbB/genética , Receptores ErbB/uso terapêutico , Humanos , Ligantes , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação
14.
Cancer ; 126(2): 373-380, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31769875

RESUMO

BACKGROUND: This study assesses different technologies for detecting epidermal growth factor receptor (EGFR) mutations from circulating tumor DNA in patients with EGFR T790M-positive advanced non-small cell lung cancer (NSCLC) from the AURA3 study (NCT02151981), and it evaluates clinical responses to osimertinib and platinum-pemetrexed according to the plasma T790M status. METHODS: Tumor tissue biopsy samples were tested for T790M during screening with the cobas EGFR Mutation Test (cobas tissue). Plasma samples were collected at screening and at the baseline and were retrospectively analyzed for EGFR mutations with the cobas EGFR Mutation Test v2 (cobas plasma), droplet digital polymerase chain reaction (ddPCR; Biodesix), and next-generation sequencing (NGS; Guardant360, Guardant Health). RESULTS: With cobas tissue test results as a reference, the plasma T790M positive percent agreement (PPA) was 51% (110 of 215 samples) by cobas plasma, 58% (110 of 189) by ddPCR, and 66% (136 of 207) by NGS. Plasma T790M detection was associated with a larger median baseline tumor size (56 mm for T790M-positive vs 39 mm for T790M-negative; P < .0001) and the presence of extrathoracic disease (58% for M1b-positive vs 39% for M0-1a-positive; P = .002). Progression-free survival (PFS) was prolonged in randomized patients (tissue T790M-positive) with a T790M-negative cobas plasma result in comparison with those with a T790M-positive plasma result in both osimertinib (median, 12.5 vs 8.3 months) and platinum-pemetrexed groups (median, 5.6 vs 4.2 months). CONCLUSIONS: PPA was similar between ddPCR and NGS assays; both were more sensitive than cobas plasma. All 3 test platforms are suitable for routine clinical practice. In patients with tissue T790M-positive NSCLC, an absence of detectable plasma T790M at the baseline is associated with longer PFS, which may be attributed to a lower disease burden.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Análise Mutacional de DNA/métodos , Neoplasias Pulmonares/tratamento farmacológico , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Humanos , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Pemetrexede/farmacologia , Pemetrexede/uso terapêutico , Intervalo Livre de Progressão , Estudos Retrospectivos , Carga Tumoral/genética
15.
Nat Commun ; 10(1): 5167, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727888

RESUMO

BRAF and MEK1/2 inhibitors are effective in melanoma but resistance inevitably develops. Despite increasing the abundance of pro-apoptotic BIM and BMF, ERK1/2 pathway inhibition is predominantly cytostatic, reflecting residual pro-survival BCL2 family activity. Here, we show that uniquely low BCL-XL expression in melanoma biases the pro-survival pool towards MCL1. Consequently, BRAF or MEK1/2 inhibitors are synthetic lethal with the MCL1 inhibitor AZD5991, driving profound tumour cell death that requires BAK/BAX, BIM and BMF, and inhibiting tumour growth in vivo. Combination of ERK1/2 pathway inhibitors with BCL2/BCL-w/BCL-XL inhibitors is stronger in CRC, correlating with a low MCL1:BCL-XL ratio; indeed the MCL1:BCL-XL ratio is predictive of ERK1/2 pathway inhibitor synergy with MCL1 or BCL2/BCL-w/BCL-XL inhibitors. Finally, AZD5991 delays acquired BRAFi/MEKi resistance and enhances the efficacy of an ERK1/2 inhibitor in a model of acquired BRAFi + MEKi resistance. Thus combining ERK1/2 pathway inhibitors with MCL1 antagonists in melanoma could improve therapeutic index and patient outcomes.


Assuntos
Apoptose , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Camundongos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteína bcl-X/metabolismo
16.
J Clin Oncol ; 36(9): 841-849, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28841389

RESUMO

Purpose The AURA study ( ClinicalTrials.gov identifier: NCT01802632) included two cohorts of treatment-naïve patients to examine clinical activity and safety of osimertinib (an epidermal growth factor receptor [EGFR] -tyrosine kinase inhibitor selective for EGFR-tyrosine kinase inhibitor sensitizing [ EGFRm] and EGFR T790M resistance mutations) as first-line treatment of EGFR-mutated advanced non-small-cell lung cancer (NSCLC). Patients and Methods Sixty treatment-naïve patients with locally advanced or metastatic EGFRm NSCLC received osimertinib 80 or 160 mg once daily (30 patients per cohort). End points included investigator-assessed objective response rate (ORR), progression-free survival (PFS), and safety evaluation. Plasma samples were collected at or after patients experienced disease progression, as defined by Response Evaluation Criteria in Solid Tumors (RECIST), to investigate osimertinib resistance mechanisms. Results At data cutoff (November 1, 2016), median follow-up was 19.1 months. Overall ORR was 67% (95% CI, 47% to 83%) in the 80-mg group, 87% (95% CI, 69% to 96%) in the 160-mg group, and 77% (95% CI, 64% to 87%) across doses. Median PFS time was 22.1 months (95% CI, 13.7 to 30.2 months) in the 80-mg group, 19.3 months (95% CI, 13.7 to 26.0 months) in the 160-mg group, and 20.5 months (95% CI, 15.0 to 26.1 months) across doses. Of 38 patients with postprogression plasma samples, 50% had no detectable circulating tumor DNA. Nine of 19 patients had putative resistance mechanisms, including amplification of MET (n = 1); amplification of EGFR and KRAS (n = 1); MEK1, KRAS, or PIK3CA mutation (n = 1 each); EGFR C797S mutation (n = 2); JAK2 mutation (n = 1); and HER2 exon 20 insertion (n = 1). Acquired EGFR T790M was not detected. Conclusion Osimertinib demonstrated a robust ORR and prolonged PFS in treatment-naïve patients with EGFRm advanced NSCLC. There was no evidence of acquired EGFR T790M mutation in postprogression plasma samples.


Assuntos
Piperazinas/uso terapêutico , Acrilamidas , Adulto , Idoso , Idoso de 80 Anos ou mais , Compostos de Anilina , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/sangue , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação , Intervalo Livre de Progressão , Inibidores de Proteínas Quinases/uso terapêutico , Taxa de Sobrevida
17.
Oncotarget ; 7(36): 57651-57670, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27472392

RESUMO

Lung cancer is the most common cause of cancer death globally with a significant, unmet need for more efficacious treatments. The receptor tyrosine kinase MET has been implicated as an oncogene in numerous cancer subtypes, including non-small cell lung cancer (NSCLC). Here we explore the therapeutic potential of savolitinib (volitinib, AZD6094, HMPL-504), a potent and selective MET inhibitor, in NSCLC. In vitro, savolitinib inhibits MET phosphorylation with nanomolar potency, which correlates with blockade of PI3K/AKT and MAPK signaling as well as MYC down-regulation. In vivo, savolitinib causes inhibition of these pathways and significantly decreases growth of MET-dependent xenografts. To understand resistance mechanisms, we generated savolitinib resistance in MET-amplified NSCLC cell lines and analyzed individual clones. We found that upregulation of MYC and constitutive mTOR pathway activation is a conserved feature of resistant clones that can be overcome by knockdown of MYC or dual mTORC1/2 inhibition. Lastly, we demonstrate that mechanisms of resistance are heterogeneous, arising via a switch to EGFR dependence or by a requirement for PIM signaling. This work demonstrates the efficacy of savolitinib in NSCLC and characterizes acquired resistance, identifying both known and novel mechanisms that may inform combination strategies in the clinic.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazinas/química , Serina-Treonina Quinases TOR/metabolismo , Triazinas/química , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-met/metabolismo
18.
Nucleic Acids Res ; 44(11): e108, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27060149

RESUMO

Accurate variant calling in next generation sequencing (NGS) is critical to understand cancer genomes better. Here we present VarDict, a novel and versatile variant caller for both DNA- and RNA-sequencing data. VarDict simultaneously calls SNV, MNV, InDels, complex and structural variants, expanding the detected genetic driver landscape of tumors. It performs local realignments on the fly for more accurate allele frequency estimation. VarDict performance scales linearly to sequencing depth, enabling ultra-deep sequencing used to explore tumor evolution or detect tumor DNA circulating in blood. In addition, VarDict performs amplicon aware variant calling for polymerase chain reaction (PCR)-based targeted sequencing often used in diagnostic settings, and is able to detect PCR artifacts. Finally, VarDict also detects differences in somatic and loss of heterozygosity variants between paired samples. VarDict reprocessing of The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma dataset called known driver mutations in KRAS, EGFR, BRAF, PIK3CA and MET in 16% more patients than previously published variant calls. We believe VarDict will greatly facilitate application of NGS in clinical cancer research.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Software , Alelos , Frequência do Gene , Variação Genética , Humanos , Mutação INDEL , Perda de Heterozigosidade , Neoplasias Pulmonares/genética , Neoplasias/genética , Curva ROC , Pesquisa
19.
Nat Med ; 21(6): 560-2, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25939061

RESUMO

Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for the T790M mutation before treatment, but upon developing AZD9291 resistance three molecular subtypes emerged: six cases acquired the C797S mutation, five cases maintained the T790M mutation but did not acquire the C797S mutation and four cases lost the T790M mutation despite the presence of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies that are able to overcome resistance mediated by the EGFR C797S mutation.


Assuntos
Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
20.
Cancer Res ; 75(12): 2489-500, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25870145

RESUMO

Resistance to targeted EGFR inhibitors is likely to develop in EGFR-mutant lung cancers. Early identification of innate or acquired resistance mechanisms to these agents is essential to direct development of future therapies. We describe the detection of heterogeneous mechanisms of resistance within populations of EGFR-mutant cells (PC9 and/or NCI-H1975) with acquired resistance to current and newly developed EGFR tyrosine kinase inhibitors, including AZD9291. We report the detection of NRAS mutations, including a novel E63K mutation, and a gain of copy number of WT NRAS or WT KRAS in cell populations resistant to gefitinib, afatinib, WZ4002, or AZD9291. Compared with parental cells, a number of resistant cell populations were more sensitive to inhibition by the MEK inhibitor selumetinib (AZD6244; ARRY-142886) when treated in combination with the originating EGFR inhibitor. In vitro, a combination of AZD9291 with selumetinib prevented emergence of resistance in PC9 cells and delayed resistance in NCI-H1975 cells. In vivo, concomitant dosing of AZD9291 with selumetinib caused regression of AZD9291-resistant tumors in an EGFRm/T790M transgenic model. Our data support the use of a combination of AZD9291 with a MEK inhibitor to delay or prevent resistance to AZD9291 in EGFRm and/or EGFRm/T790M tumors. Furthermore, these findings suggest that NRAS modifications in tumor samples from patients who have progressed on current or EGFR inhibitors in development may support subsequent treatment with a combination of EGFR and MEK inhibition.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Receptores ErbB/antagonistas & inibidores , Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzimidazóis/administração & dosagem , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Mutação , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...