Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 127(Pt 17): 3687-98, 2014 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-24994934

RESUMO

The neuronal function of Cys-loop neurotransmitter receptors is established; however, their role in non-neuronal cells is poorly defined. As brain tumors are enriched in the neurotransmitter glycine, we studied the expression and function of glycine receptors (GlyRs) in glioma cells. Human brain tumor biopsies selectively expressed the GlyR α1 and α3 subunits, which have nuclear localization signals (NLSs). The mouse glioma cell line GL261 expressed GlyR α1, and knockdown of GlyR α1 protein expression impaired the self-renewal capacity and tumorigenicity of GL261 glioma cells, as shown by a neurosphere assay and GL261 cell inoculation in vivo, respectively. We furthermore showed that the pronounced tumorigenic effect of GlyR α1 relies on a new intracellular signaling function that depends on the NLS region in the large cytosolic loop and impacts on GL261 glioma cell gene regulation. Stable expression of GlyR α1 and α3 loops rescued the self-renewal capacity of GlyR α1 knockdown cells, which demonstrates their functional equivalence. The new intracellular signaling function identified here goes beyond the well-established role of GlyRs as neuronal ligand-gated ion channels and defines NLS-containing GlyRs as new potential targets for brain tumor therapies.


Assuntos
Citoplasma/metabolismo , Glioma/metabolismo , Receptores de Glicina/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Glioma/patologia , Glicina/metabolismo , Humanos , Camundongos , Receptores de Glicina/genética
2.
Stem Cells ; 26(11): 2945-54, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18757298

RESUMO

Glioblastomas, the most aggressive primary brain tumors, occur almost exclusively in adult patients. Neural precursor cells (NPCs) are antitumorigenic in mice, as they can migrate to glioblastomas and induce tumor cell death. Here, we show that the antitumor effect of NPCs is age-dependently controlled by cell proliferation in the subventricular zone (SVZ) and that NPCs accumulating at a glioblastoma are diverted from their normal migratory path to the olfactory bulb. Experimentally induced cortical glioblastomas resulted in decreased subventricular proliferation in adult (postnatal day 90) but not in young (postnatal day 30) mice. Adult mice supplied fewer NPCs to glioblastomas and had larger tumors than young mice. Apart from the difference in proliferation, there was neither a change in cell number and death rate in the SVZ nor a change in angiogenesis and immune cell density in the tumors. The ability to kill glioblastomas was similar in NPCs isolated from young and adult mice. The proliferative response of NPCs to glioblastomas depended on the expression of D-type cyclins. In young mice, NPCs express the cyclins D1 and D2, but the expression of cyclin D1 is lost during aging, and in adult NPCs only cyclin D2 remains. In young and adult cyclin D2-deficient mice we observed a reduced supply of NPCs to glioblastomas and the generation of larger tumors compared with wild-type mice. We conclude that cyclin D1 and D2 are nonredundant for the antitumor response of subventricular NPCs. Loss of a single D-type cyclin results in a smaller pool of proliferating NPCs, lower number of NPCs migrating to the tumor, and reduced antitumor activity. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Neurônios/transplante , Células-Tronco/citologia , Fatores Etários , Animais , Neoplasias Encefálicas/patologia , Proliferação de Células , Células Cultivadas , Ciclina D1/metabolismo , Ciclina D2 , Ciclinas/metabolismo , Glioblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Células-Tronco
3.
J Neuropathol Exp Neurol ; 64(9): 754-62, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16141784

RESUMO

Gliomas represent the most frequent type of human brain tumor, and their strong invasiveness is a significant clinical problem. Microglia, the immunocompetent cells of the brain, contribute significantly to the tumor and are potential interaction partners of the glioma cells. We studied the impact of the presence of microglia on tumor cell invasion in cultured brain slices. To selectively deplete microglia, the slices were treated with clodronate-filled liposomes. When glioma cells were injected into slices devoid of endogenous microglia, the invasiveness of the tumors was significantly decreased as compared with controls. Inoculation of exogenous microglia together with glioma cells into cultured brain slices increased the infiltrative behavior of the tumor depending on the microglia/glioma cell ratio. Cell culture experiments revealed that soluble factors released from glioma cells strongly stimulate metalloprotease-2 activity in microglia. In the brain slices inoculated with glioma cells, increased activity of metalloprotease-2 was directly correlated with the abundance of microglia. Our data indicate that glioma cells stimulate microglial cells to increase breakdown of extracellular matrix and thereby promote tumor invasiveness.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Metaloproteases/metabolismo , Microglia/enzimologia , Invasividade Neoplásica/patologia , Animais , Antimetabólitos/administração & dosagem , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Ácido Clodrônico/administração & dosagem , Imunofluorescência , Glioma/metabolismo , Humanos , Lipossomos , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microscopia Confocal , Técnicas de Cultura de Órgãos
4.
J Neurosci ; 25(10): 2637-46, 2005 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-15758174

RESUMO

Neural precursor cells contribute to adult neurogenesis and to limited attempts of brain repair after injury. Here we report that in a murine experimental glioblastoma model, endogenous neural precursors migrate from the subventricular zone toward the tumor and surround it. The association of endogenous precursors with syngenic tumor grafts was observed, after injecting red fluorescent protein-labeled G261 cells into the caudate-putamen of transgenic mice, which express green fluorescent protein under a promoter for nestin (nestin-GFP). Fourteen days after inoculation, the nestin-GFP cells surrounded the tumors in several cell layers and expressed markers of early noncommitted and committed precursors. Nestin-GFP cells were further identified by a characteristic membrane current pattern as recorded in acute brain slices. 5-bromo-2-deoxyuridine labeling and dye tracing experiments revealed that the tumor-associated precursors originated from the subventricular zone. Moreover, in cultured explants from the subventricular zone, the neural precursors showed extensive tropism for glioblastomas. Tumor-induced endogenous precursor cell accumulation decreased with age of the recipient; this correlated with increased tumor size and shorter survival times in aged mice. Coinjection of glioblastoma cells with neural precursors improved the survival time of old mice to a level similar to that in young mice. Coculture experiments showed that neural precursors suppressed the rapid increase in tumor cell number, which is characteristic of glioblastoma, and induced glioblastoma cell apoptosis. Our results indicate that tumor cells attract endogenous precursor cells; the presence of precursor cells is antitumorigenic; and this cellular interaction decreases with aging.


Assuntos
Comunicação Celular , Movimento Celular/fisiologia , Glioblastoma/mortalidade , Glioblastoma/patologia , Neurônios/citologia , Neurônios/transplante , Células-Tronco/citologia , Animais , Núcleo Caudado/citologia , Núcleo Caudado/transplante , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura/métodos , Glioblastoma/cirurgia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Transplante de Células-Tronco/métodos , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...