Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 11: 1213-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069363

RESUMO

Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform.


Assuntos
Sistemas de Liberação de Medicamentos , Implantes de Medicamento , Fluorescência , Nanopartículas/química , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Difusão , Camundongos , Camundongos Nus , Tamanho da Partícula , Imagens de Fantasmas
2.
J Biomed Opt ; 20(3): 035005, 2015 03.
Artigo em Inglês | MEDLINE | ID: mdl-25822954

RESUMO

Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20 cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models.


Assuntos
Contagem de Células Sanguíneas/métodos , Células Sanguíneas , Meios de Contraste , Citometria de Fluxo/métodos , Algoritmos , Animais , Contagem de Células Sanguíneas/instrumentação , Computadores , Pavilhão Auricular/irrigação sanguínea , Citometria de Fluxo/instrumentação , Camundongos , Microesferas , Imagens de Fantasmas , Sensibilidade e Especificidade
3.
Int J Radiat Oncol Biol Phys ; 91(2): 393-400, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25636762

RESUMO

PURPOSE: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. METHODS AND MATERIALS: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. RESULTS: The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. CONCLUSIONS: The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when administered systemically. The results demonstrate that these spacers with tailored release profiles have potential in improving the combined therapeutic efficacy of chemoradiation therapy.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Implantes de Medicamento/administração & dosagem , Nanocápsulas/química , Neoplasias Experimentais/terapia , Dióxido de Silício/química , Taxoides/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Quimiorradioterapia/instrumentação , Quimiorradioterapia/métodos , Docetaxel , Implantes de Medicamento/química , Camundongos , Nanocápsulas/ultraestrutura , Neoplasias Experimentais/química , Neoplasias Experimentais/patologia , Resultado do Tratamento
4.
Artigo em Inglês | MEDLINE | ID: mdl-25570932

RESUMO

There are many applications in biomedical research where detection and enumeration of circulating cells (CCs) is important. Existing techniques involve drawing and enriching blood samples and analyzing them ex vivo. More recently, small animal "in vivo flow cytometry" (IVFC) techniques have been developed, where fluorescently-labeled cells flowing through small arterioles (ear, retina) are detected and counted. We recently developed a new high-sensitivity IVFC technique termed "Computer Vision(CV)-IVFC". Here, large circulating blood volumes were monitored in the ears of mice with a wide-field video-rate near-infrared (NIR) fluorescent camera. Cells were labeled with a membrane dye and were detected and tracked in noisy image sequences. This technique allowed enumeration of CCs in vivo with overall sensitivity better than 10 cells/mL. However, an ongoing area of interest in our lab is optimization of the system for lower-contrast imaging conditions, e.g. when CCs are weakly labeled, or in the case higher background autofluorescence with visible dyes. To this end, we developed a new optical flow phantom model to control autofluorescence intensity and physical structure to better mimic conditions observed in mice. We acquired image sequences from a series of phantoms with varying levels of contrast and analyzed the distribution of pixel intensities, and showed that we could generate similar conditions to those in vivo. We characterized the performance of our CV-IVFC algorithm in these phantoms with respect to sensitivity and false-alarm rates. Use of this phantom model in optimization of the instrument and algorithm under lower-contrast conditions is the subject of ongoing work in our lab.


Assuntos
Rastreamento de Células/métodos , Citometria de Fluxo/instrumentação , Animais , Corantes Fluorescentes/química , Humanos , Processamento de Imagem Assistida por Computador , Microesferas , Imagens de Fantasmas , Sensibilidade e Especificidade
5.
Cytometry A ; 83(12): 1113-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24273157

RESUMO

Noninvasive enumeration of rare circulating cell populations in small animals is of great importance in many areas of biomedical research. In this work, we describe a macroscopic fluorescence imaging system and automated computer vision algorithm that allows in vivo detection, enumeration and tracking of circulating fluorescently-labeled cells from multiple large blood vessels in the ear of a mouse. This imaging system uses a 660 nm laser and a high sensitivity electron-multiplied charge coupled device camera (EMCCD) to acquire fluorescence image sequences from relatively large (∼5 × 5 mm(2) ) imaging areas. The primary technical challenge was developing an automated method for identifying and tracking rare cell events in image sequences with substantial autofluorescence and noise content. To achieve this, we developed a two-step image analysis algorithm that first identified cell candidates in individual frames, and then merged cell candidates into tracks by dynamic analysis of image sequences. The second step was critical since it allowed rejection of >97% of false positive cell counts. Overall, our computer vision IVFC (CV-IVFC) approach allows single-cell detection sensitivity at estimated concentrations of 20 cells/mL of peripheral blood. In addition to simple enumeration, the technique recovers the cell's trajectory, which in the future could be used to automatically identify, for example, in vivo homing and docking events.


Assuntos
Citometria de Fluxo/métodos , Algoritmos , Animais , Contagem de Células Sanguíneas/instrumentação , Contagem de Células Sanguíneas/métodos , Rastreamento de Células , Citometria de Fluxo/instrumentação , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Nus , Mieloma Múltiplo/sangue , Mieloma Múltiplo/patologia , Transplante de Neoplasias , Células Neoplásicas Circulantes , Imagens de Fantasmas
6.
Artigo em Inglês | MEDLINE | ID: mdl-22255423

RESUMO

The development of functional activity monitors (FAMs) will allow rehabilitation researchers and clinicians to evaluate treatment efficacy, to monitor compliance to exercise instructions, and to provide real time feedback in the treatment of movement disorders during the performance of daily activities. The purpose of the present study was to develop and test a small sized wearable FAM system comprised of three sensors positioned on the sternum and both thighs, wireless Bluetooth transmission capability to a smartphone, and computationally efficient activity detection algorithms for the accurate detection of functional activities. Each sensor was composed of a tri-axial accelerometer and a tri-axial gyroscope. Computationally efficient activity recognition algorithms were developed, using a sliding window of 1 second, the variability of the tilt angle time series and power spectral analysis. In addition, it includes a decision tree that identifies postures such as sitting, standing and lying, walking at comfortable, slow and fast speeds, transitions between these functional activities (e.g, sit-to-stand and stand-to-sit), activity duration and step frequency. In a research lab setting the output of the FAM system, video recordings and a 3D motion analysis system were compared in 10 healthy young adults. The results show that the agreement between the FAM system and the video recordings ranged from 98.10% to 100% for all postures, transfers and walking periods. There were no significant differences in activity durations and step frequency between measurement instruments.


Assuntos
Monitorização Fisiológica/instrumentação , Ondas de Rádio , Aceleração , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA