Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 7(4): 1517-1526, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425379

RESUMO

Herein, we systematically examined how composition influenced the properties of vinyl addition polynorbornene anion exchange membranes (AEMs) prepared from 5-n-hexyl-2-norbornene and 5-(4-bromobutyl)-2-norbornene. Copolymerization kinetics revealed that 5-n-hexyl-2-norbornene is consumed faster than 5-(4-bromobutyl)-2-norbornene, leading to a portion of the chain being richer in bromoalkyl groups. The alkyl halide pendants can then be converted to either trimethylammonium or tetrakis(dialkylamino)phosphonium cations through straightforward substitution with trimethylamine or a tris(dialkylamino)phosphazene. A series of cationic ammonium polymers were synthesized first, where conductivity and water uptake increased as a function of increasing ionic content in the polymer. The optimized copolymer had a hydroxide conductivity of 95 ± 6 mS/cm at 80 °C. The living polymerization of the two monomers catalyzed by a cationic tert-butylphosphine palladium catalyst also enabled precise changes in the molecular weight while keeping the functional group concentration constant. Molecular weight did not have a significant impact on hydroxide conductivity over the range of ∼60-190 kg/mol (Mn). The optimized tetraaminophosphonium AEM had the highest conductivity for any tetraaminophosphonium polymer to date (70 ± 3 mS/cm at 80 °C). Clear phase separation and larger domains were observed for the phosphonium-based AEM compared to the ammonium at an identical composition, which is attributed to the larger occupied volume of the phosphorus cation. Fuel cell studies with the two membranes resulted in peak power densities of 1.59 and 0.79 W/cm2 for the ammonium and tetraaminophosphonium membrane electrode assemblies, respectively. The ammonium-based membrane was more water permeable as evidenced by water limiting current studies, which likely contributed to the improved performance.

3.
Chem Rev ; 122(6): 6117-6321, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133808

RESUMO

Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.


Assuntos
Fontes de Energia Elétrica , Prótons , Hidrogênio/química , Oxigênio/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...