Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202407273, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770935

RESUMO

A new approach to control the n-doping reaction of organic semiconductors is reported using surface-functionalized gold nanoparticles (f-AuNPs) with alkylthiols acting as the catalyst only upon mild thermal activation. To demonstrate the versatility of this methodology, the reaction of the n-type dopant precursor N-DMBI-H with several molecular and polymeric semiconductors at different temperatures with/without f-AuNPs, vis-à-vis the unfunctionalized catalyst AuNPs, was investigated by spectroscopic, morphological, charge transport, and kinetic measurements as well as, computationally, the thermodynamic of catalyst activation. The combined experimental and theoretical data demonstrate that f-AuNPs is inactive at room temperature both in solution and in the solid state, catalyst activation occurs rapidly at mild temperatures (~ 70 °C) and the doping reaction completes in few seconds affording large electrical conductivities (~ 10 - 140 S cm-1). The implementation of this methodology enables the use of semiconductor+dopant+catalyst solutions, will broaden the use of the corresponding n-doped films in opto-electronic devices such as thin-film transistors, electrochemical transistors, solar cells, and thermoelectrics well as guide the design of new catalysts.

2.
Nanoscale ; 16(17): 8369-8377, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38572999

RESUMO

As thin films of semiconducting covalent organic frameworks (COFs) are demonstrating utility for ambipolar electronics, channel materials in organic electrochemical transistors (OECTs), and broadband photodetectors, control and modulation of their thin film properties is paramount. In this work, an interfacial growth technique is utilized to synthesize imine TAPB-PDA COF films at both the liquid-liquid interface as well as at the liquid-solid interface on a Si/SiO2 substrate. The concentration of acetic acid catalyst in the aqueous phase is shown to significantly influence the thin film morphology of the liquid-solid growth, with concentrations below 1 M resulting in no film nucleation, concentrations of 1-4 M enabling smooth film formation, and concentrations greater than 4 M resulting in films with a higher density of particulates on the surface. Importantly, while the films grown at the liquid-liquid interface are mixed-orientation, those grown directly at the liquid-solid interface on the Si/SiO2 surface have highly oriented COF layers aligned parallel to the substrate surface. Moreover, this liquid-solid growth process affords TAPB-PDA COF thin films with p-type charge transport having a transconductance of 10 µS at a gate voltage of -0.9 V in an OECT device structure.

3.
Angew Chem Int Ed Engl ; 63(22): e202403494, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38551580

RESUMO

Chemical modification is a powerful strategy for tuning the electronic properties of 2D semiconductors. Here we report the electrophilic trifluoromethylation of 2D WSe2 and MoS2 under mild conditions using the reagent trifluoromethyl thianthrenium triflate (TTT). Chemical characterization and density functional theory calculations reveal that the trifluoromethyl groups bind covalently to surface chalcogen atoms as well as oxygen substitution sites. Trifluoromethylation induces p-type doping in the underlying 2D material, enabling the modulation of charge transport and optical emission properties in WSe2. This work introduces a versatile and efficient method for tailoring the optical and electronic properties of 2D transition metal dichalcogenides.

4.
Angew Chem Int Ed Engl ; 63(17): e202320214, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38418405

RESUMO

Geminal (gem-) disubstitution in heterocyclic monomers is an effective strategy to enhance polymer chemical recyclability by lowering their ceiling temperatures. However, the effects of specific substitution patterns on the monomer's reactivity and the resulting polymer's properties are largely unexplored. Here we show that, by systematically installing gem-dimethyl groups onto ϵ-caprolactam (monomer of nylon 6) from the α to ϵ positions, both the redesigned lactam monomer's reactivity and the resulting gem-nylon 6's properties are highly sensitive to the substitution position, with the monomers ranging from non-polymerizable to polymerizable and the gem-nylon properties ranging from inferior to far superior to the parent nylon 6. Remarkably, the nylon 6 with the gem-dimethyls substituted at the γ position is amorphous and optically transparent, with a higher Tg (by 30 °C), yield stress (by 1.5 MPa), ductility (by 3×), and lower depolymerization temperature (by 60 °C) than conventional nylon 6.

6.
Nat Mater ; 23(5): 695-702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38287128

RESUMO

π-Conjugated polymers (CPs) have broad applications in high-performance optoelectronics, energy storage, sensors and biomedicine. However, developing green and efficient methods to precisely synthesize alternating CP structures on a large scale remains challenging and critical for their industrialization. Here a room-temperature, scalable and homogeneous Suzuki-Miyaura-type polymerization reaction is developed with broad generality validated for 24 CPs including donor-donor, donor-acceptor and acceptor-acceptor connectivities, yielding device-quality polymers with high molecular masses. Furthermore, the polymerization protocol significantly reduces homocoupling structural defects, yielding more structurally regular and higher-performance electronic materials and optoelectronic devices than conventional thermally activated polymerizations. Experimental and theoretical studies reveal that a borate transmetalation process plays a key role in suppressing protodeboronation, which is critical for large-scale structural regularity. Thus, these results provide a general polymerization tool for the scalable production of device-quality CPs with alternating structural regularity.

7.
Small Methods ; 8(2): e2300246, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37203281

RESUMO

New emerging low-dimensional such as 0D, 1D, and 2D nanomaterials have attracted tremendous research interests in various fields of state-of-the-art electronics, optoelectronics, and photonic applications due to their unique structural features and associated electronic, mechanical, and optical properties as well as high-throughput fabrication for large-area and low-cost production and integration. Particularly, photodetectors which transform light to electrical signals are one of the key components in modern optical communication and developed imaging technologies for whole application spectrum in the daily lives, including X-rays and ultraviolet biomedical imaging, visible light camera, and infrared night vision and spectroscopy. Today, diverse photodetector technologies are growing in terms of functionality and performance beyond the conventional silicon semiconductor, and low-dimensional nanomaterials have been demonstrated as promising potential platforms. In this review, the current states of progress on the development of these nanomaterials and their applications in the field of photodetectors are summarized. From the elemental combination for material design and lattice structure to the essential investigations of hybrid device architectures, various devices and recent developments including wearable photodetectors and neuromorphic applications are fully introduced. Finally, the future perspectives and challenges of the low-dimensional nanomaterials based photodetectors are also discussed.

8.
Angew Chem Int Ed Engl ; 62(50): e202312546, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37948306

RESUMO

The novel electrophilic organo-tantalum catalyst AlS/TaNpx (1) (Np=neopentyl) is prepared by chemisorption of the alkylidene Np3 Ta=CHt Bu onto highly Brønsted acidic sulfated alumina (AlS). The proposed catalyst structure is supported by EXAFS, XANES, ICP, DRIFTS, elemental analysis, and SSNMR measurements and is in good agreement with DFT analysis. Catalyst 1 is highly effective for the hydrogenolysis of diverse linear and branched hydrocarbons, ranging from C2 to polyolefins. To the best of our knowledge, 1 exhibits one of the highest polyolefin hydrogenolysis activities (9,800 (CH2 units) ⋅ mol(Ta)-1 ⋅ h-1 at 200 °C/17 atm H2 ) reported to date in the peer-reviewed literature. Unlike the AlS/ZrNp2 analog, the Ta catalyst is more thermally stable and offers multiple potential C-C bond activation pathways. For hydrogenolysis, AlS/TaNpx is effective for a wide variety of pre- and post-consumer polyolefin plastics and is not significantly deactivated by standard polyolefin additives at typical industrial concentrations.

9.
ACS Nano ; 17(17): 17516-17526, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37606956

RESUMO

Due to their superior optoelectronic properties, monolayer two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant attention for electroluminescent devices. However, challenges in isolating optoelectronically active TMD monolayers using scalable liquid phase exfoliation have precluded electroluminescence in large-area, solution-processed TMD films. Here, we overcome these limitations and demonstrate electroluminescence from molybdenum disulfide (MoS2) nanosheet films by employing a monolayer-rich MoS2 ink produced by electrochemical intercalation and megasonic exfoliation. Characteristic monolayer MoS2 photoluminescence and electroluminescence spectral peaks at 1.88-1.90 eV are observed in megasonicated MoS2 films, with the emission intensity increasing with film thickness over the range 10-70 nm. Furthermore, employing a vertical light-emitting capacitor architecture enables uniform electroluminescence in large-area devices. These results indicate that megasonically exfoliated MoS2 monolayers retain their direct bandgap character in electrically percolating thin films even following multistep solution processing. Overall, this work establishes megasonicated MoS2 inks as an additive manufacturing platform for flexible, patterned, and miniaturized light sources that can likely be expanded to other TMD semiconductors.

10.
ACS Energy Lett ; 8(7): 2940-2945, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37469390

RESUMO

With the rapid development of perovskite solar cells (PSCs), lowering fabrication costs for PSCs has become a prominent challenge for commercialization. At present, gold is commonly used as the back metal electrode in state-of-the-art n-i-p structured PSCs due to its compatible work function, chemical inertness, and high conductivity. However, the high cost of gold and the expensive and time-consuming vacuum-based thin-film coating facilities may impede large-scale industrialization of PSCs. Here, we report a bilayer back electrode configuration consisting of an Ni-doped natural graphite layer with a fusible Bi-In alloy. This back electrode can be deposited in a vacuum-free approach and enables PSCs with a power conversion efficiency of 21.0%. These inexpensive materials and facile ambient fabrication techniques provide an appealing disruptive solution to low-cost PSC industrialization.

11.
J Am Chem Soc ; 145(24): 13411-13419, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279083

RESUMO

Here, we demonstrate for the first time the ability of a porous π-conjugated semiconducting polymer film to enable facile electrolyte penetration through vertically stacked redox-active polymer layers, thereby enabling electrochromic switching between p-type and/or n-type polymers. The polymers P1 and P2, with structures diketopyrrolopyrrole (DPP)-πbridge-3,4,-ethylenedioxythiophene (EDOT)-πbridge [πbridge = 2,5-thienyl for P1 and πbridge = 2,5-thiazolyl for P2] are selected as the p-type polymers and N2200 (a known naphthalenediimide-dithiophene semiconductor) as the n-type polymer. Single-layer porous and dense (control) polymer films are fabricated and extensively characterized using optical microscopy, atomic force microscopy, scanning electron microscopy, and grazing incidence wide-angle X-ray scattering. The semiconducting films are then incorporated into single and multilayer electrochromic devices (ECDs). It is found that when a p-type (P2) porous top layer is used in a multilayer ECD, it enables electrolyte penetration to the bottom layer, enabling oxidative electrochromic switching of the P1 bottom layer at low potentials (+0.4 V versus +1.2 V with dense P2). Importantly, when using a porous P1 as the top layer with an n-type N2200 bottom layer, dynamic oxidative-reductive electrochromic switching is also realized. These results offer a proof of concept for development of new types of multilayer electrochromic devices where precise control of the semiconductor film morphology and polymer electronic structure is essential.

12.
Chemistry ; 29(45): e202300653, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37191934

RESUMO

Realizing efficient all-polymer solar cell (APSC) acceptors typically involves increased building block synthetic complexity, hence potentially unscalable syntheses and/or prohibitive costs. Here we report the synthesis, characterization, and implementation in APSCs of three new polymer acceptors P1-P3 using a scalable donor fragment, bis(2-octyldodecyl)anthra[1,2-b : 5,6-b']dithiophene-4,10-dicarboxylate (ADT) co-polymerized with the high-efficiency acceptor units, NDI, Y6, and IDIC. All three copolymers have comparable photophysics to known polymers; however, APSCs fabricated by blending P1, P2 and P3 with donor polymers PM5 and PM6 exhibit modest power conversion efficiencies (PCEs), with the champion P2-based APSC achieving PCE=5.64 %. Detailed morphological and microstructural analysis by AFM and GIWAXS reveal a non-optimal APSC active layer morphology, which suppresses charge transport. Despite the modest efficiencies, these APSCs demonstrate the feasibility of using ADT as a scalable and inexpensive electron rich/donor building block for APSCs.

13.
Angew Chem Int Ed Engl ; 62(34): e202304221, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37142561

RESUMO

When early transition metal complexes are molecularly grafted onto catalyst supports, well-defined, surface-bound species are created, which are highly active and selective single-site heterogeneous catalysts (SSHCs) for diverse chemical transformations. In this minireview, we analyze and summarize a less conventional type of SSHC in which molybdenum dioxo species are grafted onto unusual carbon-unsaturated scaffolds, such as activated carbon, reduced graphene oxide, and carbon nanohorns. The choice of earth-abundant, low-toxicity, versatile metal constituents, and various carbon supports illustrates "catalyst by design" principles and yields insights into new catalytic systems of both academic and technological interest. Here, we summarize experimental and computational investigations of the bonding, electronic structure, reaction scope, and mechanistic pathways of these unusual catalysts.

14.
Nat Commun ; 14(1): 2193, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069140

RESUMO

Two-dimensional (2D) materials have attracted attention for quantum information science due to their ability to host single-photon emitters (SPEs). Although the properties of atomically thin materials are highly sensitive to surface modification, chemical functionalization remains unexplored in the design and control of 2D material SPEs. Here, we report a chemomechanical approach to modify SPEs in monolayer WSe2 through the synergistic combination of localized mechanical strain and noncovalent surface functionalization with aryl diazonium chemistry. Following the deposition of an aryl oligomer adlayer, the spectrally complex defect-related emission of strained monolayer WSe2 is simplified into spectrally isolated SPEs with high single-photon purity. Density functional theory calculations reveal energetic alignment between WSe2 defect states and adsorbed aryl oligomer energy levels, thus providing insight into the observed chemomechanically modified quantum emission. By revealing conditions under which chemical functionalization tunes SPEs, this work broadens the parameter space for controlling quantum emission in 2D materials.

15.
Inorg Chem ; 62(12): 4799-4813, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36921086

RESUMO

We report the synthesis and characterization of a highly conjugated bisferrocenyl pyrrolediimine ligand, Fc2PyrDIH (1), and its trinuclear complexes with rare earth ions─(Fc2PyrDI)M(N(TMS)2)2 (2-M, M = Sc, Y, Lu, La). Crystal structures, nuclear magnetic resonance (NMR) spectra, and ultraviolet/visible/near-infrared (UV/vis-NIR) data are presented. The latter are in good agreement with DFT calculations, illuminating the impact of the rare earth ionic radius on NIR charge transfer excitations. For [2-Sc]+, the charge transfer is at 11,500 cm-1, while for [2-Y]+, only a d-d transition at 8000 cm-1 is observed. Lu has an ionic radius in between Sc and Y, and the [2-Lu]+ complex exhibits both transitions. From time-dependent density functional theory (TDDFT) analysis, we assign the 11,500 cm-1 transition as a mixture of metal-to-ligand charge transfer (MLCT) and metal-to-metal charge transfer (MMCT), rather than pure metal-to-metal CT because it has significant ligand character. Typically, the ferrocenes moieties have high rotational freedom in bis-ferrocenyl mixed valent complexes. However, in the present (Fc2PyrDI)M(N(TMS)2)2 complexes, ligand-ligand repulsions lock the rotational freedom so that rare-earth ionic radius-dependent geometric differences increasingly influence orbital overlap as the ionic radius falls. The Marcus-Hush coupling constant HAB trends as [2-Sc]+ > [2-Lu]+ > [2-Y]+.

16.
Chem Sci ; 14(12): 3247-3256, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36970105

RESUMO

Carbonyl bond hydroboration is a valuable synthetic route to functionalized alcohols but relies on sometimes unselective and sluggish reagents. While rapid and selective aldehyde and ketone hydroboration mediated by trisamidolanthanide catalysts is known, the origin of the selectivity is not well-understood and is the subject of this contribution. Here the aldehyde and ketone HBpin hydroboration reaction mechanisms catalyzed by La[N(SiMe3)2]3 are investigated both experimentally and theoretically. The results support initial carbonyl oxygen coordination to the acidic La center, followed by intramolecular ligand-assisted hydroboration of the carbonyl moiety by bound HBpin. Interestingly, ketone hydroboration has a higher energetic barrier than that of aldehydes due to the increased steric encumbrance and decreased electrophilicity. Utilizing NMR spectroscopy and X-ray diffraction, a bidentate acylamino lanthanide complex associated with the aldehyde hydroboration is isolated and characterized, consistent with the relative reaction rates. Furthermore, an aminomonoboronate-lanthanide complex produced when the La catalyst is exposed to excess HBpin is isolated and characterized by X-ray diffraction, illuminating unusual aminomonoboronate coordination. These results shed new light on the origin of the catalytic activity patterns, reveal a unique ligand-assisted hydroboration pathway, and uncover previously unknown catalyst deactivation pathways.

17.
Nano Lett ; 23(4): 1459-1466, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36758173

RESUMO

Electrocatalytic nitrate to ammonia conversion is a key reaction for energy and environmental sustainability. This reaction involves complex multi electron and proton transfer steps, and is impeded by the lack of catalyst for promoting both reactivity and ammonia selectivity. Here, we demonstrate active motifs based on the Chevrel phase Co2Mo6S8 exhibit an enzyme-like high turnover frequency of ∼95.1 s-1 for nitrate electroreduction to ammonia. We reveal strong synergy of multiple binding sites on this catalyst, such that the ligand effect of Co steers Had* toward hydrogenation other than hydrogen evolution, the ensemble effect of Co, and the spatial confinement effect that promote the full hydrogenation of NOx to ammonia without N-N coupling. The catalyst exhibits almost exclusive ammonia conversion with a Faradaic efficiency of 97.1% and ammonia yielding rate of 115.5 mmol·gcat-1·h-1 in neutral electrolytes. The high activity was also confirmed in electrolytes with dilute nitrate and high chloride concentrations.

18.
Adv Mater ; 35(35): e2209906, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36808773

RESUMO

Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.


Assuntos
Dispositivos Eletrônicos Vestíveis , Eletrônica , Semicondutores , Próteses e Implantes , Engenharia , Transistores Eletrônicos
19.
Nature ; 613(7944): 496-502, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653571

RESUMO

Organic electrochemical transistors (OECTs) and OECT-based circuitry offer great potential in bioelectronics, wearable electronics and artificial neuromorphic electronics because of their exceptionally low driving voltages (<1 V), low power consumption (<1 µW), high transconductances (>10 mS) and biocompatibility1-5. However, the successful realization of critical complementary logic OECTs is currently limited by temporal and/or operational instability, slow redox processes and/or switching, incompatibility with high-density monolithic integration and inferior n-type OECT performance6-8. Here we demonstrate p- and n-type vertical OECTs with balanced and ultra-high performance by blending redox-active semiconducting polymers with a redox-inactive photocurable and/or photopatternable polymer to form an ion-permeable semiconducting channel, implemented in a simple, scalable vertical architecture that has a dense, impermeable top contact. Footprint current densities exceeding 1 kA cm-2 at less than ±0.7 V, transconductances of 0.2-0.4 S, short transient times of less than 1 ms and ultra-stable switching (>50,000 cycles) are achieved in, to our knowledge, the first vertically stacked complementary vertical OECT logic circuits. This architecture opens many possibilities for fundamental studies of organic semiconductor redox chemistry and physics in nanoscopically confined spaces, without macroscopic electrolyte contact, as well as wearable and implantable device applications.

20.
Proc Natl Acad Sci U S A ; 120(3): e2216672120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36630451

RESUMO

Cost-effective fabrication of mechanically flexible low-power electronics is important for emerging applications including wearable electronics, artificial intelligence, and the Internet of Things. Here, solution-processed source-gated transistors (SGTs) with an unprecedented intrinsic gain of ~2,000, low saturation voltage of +0.8 ± 0.1 V, and a ~25.6 µW power consumption are realized using an indium oxide In2O3/In2O3:polyethylenimine (PEI) blend homojunction with Au contacts on Si/SiO2. Kelvin probe force microscopy confirms source-controlled operation of the SGT and reveals that PEI doping leads to more effective depletion of the reverse-biased Schottky contact source region. Furthermore, using a fluoride-doped AlOx gate dielectric, rigid (on a Si substrate) and flexible (on a polyimide substrate) SGTs were fabricated. These devices exhibit a low driving voltage of +2 V and power consumption of ~11.5 µW, yielding inverters with an outstanding voltage gain of >5,000. Furthermore, electrooculographic (EOG) signal monitoring can now be demonstrated using an SGT inverter, where a ~1.0 mV EOG signal is amplified to over 300 mV, indicating significant potential for applications in wearable medical sensing and human-computer interfacing.


Assuntos
Inteligência Artificial , Condução de Veículo , Humanos , Dióxido de Silício , Fontes de Energia Elétrica , Óxidos , Polietilenoimina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...