Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38998762

RESUMO

Macroalgae seaweeds such as Ulva lactuca and Gracilaria verrucosa cause problems on the northern coast of the Italian Adriatic Sea because their overabundance hinders the growth of cultivated clams, Rudatapes philippinarum. This study focused on the green synthesis of CuO nanoparticles from U. lactuca and G. verrucosa. The biosynthesized CuO NPs were successfully characterized using FTIR, XRD, HRTEM/EDX, and zeta potential. Nanoparticles from the two different algae species are essentially identical, with the same physical characteristics and almost the same antimicrobial activities. We have not investigated the cause of this identity, but it seems likely to arise from the reaction of Cu with the same algae metabolites in both species. The study demonstrates that it is possible to obtain useful products from these macroalgae through a green synthesis approach and that they should be considered as not just a cause of environmental and economic damage but also as a potential source of income.

2.
Toxics ; 12(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38251021

RESUMO

Biochar (BC) boasts diverse environmental applications. However, its potential for environmental biomonitoring has, surprisingly, remained largely unexplored. This study presents a preliminary analysis of BC's potential as a biomonitor for the environmental availability of ionic Cd, utilizing the lichen Evernia prunastri (L.) Ach. as a reference organism. For this purpose, the lichen E. prunastri and two types of wood-derived biochar, biochar 1 (BC1) and biochar 2 (BC2), obtained from two anonymous producers, were investigated for their ability to accumulate, or sequester and subsequently release, Cd when exposed to Cd-depleted conditions. Samples of lichen and biochar (fractions between 2 and 4 mm) were soaked for 1 h in a solution containing deionized water (control), 10 µM, and 100 µM Cd2+ (accumulation phase). Then, 50% of the treated samples were soaked for 24 h in deionized water (depuration phase). The lichen showed a very good ability to adsorb ionic Cd, higher than the two biochar samples (more than 46.5%), and a weak ability to release the metal (ca. 6%). As compared to the lichen, BC2 showed a lower capacity for Cd accumulation (-48%) and release (ca. 3%). BC1, on the other hand, showed a slightly higher Cd accumulation capacity than BC2 (+3.6%), but a release capacity similar to that of the lichen (ca. 5%). The surface area and the cation exchange capacity of the organism and the tested materials seem to play a key role in their ability to accumulate and sequester Cd, respectively. This study suggests the potential use of BC as a (bio)monitor for the presence of PTEs in atmospheric depositions and, perhaps, water bodies.

3.
Nanomaterials (Basel) ; 14(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38251116

RESUMO

Engineered nanomaterials (ENMs), by definition materials with a size between 1 and 100 nm, are becoming an important part of the economy and thanks to their many fields of applications, from photovoltaic cells to fertilizers, are increasingly coming into contact with plants and with the environment in general [...].

4.
Int J Phytoremediation ; 26(6): 850-861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37886884

RESUMO

When applied in the same concentration to tomato plants, cadmium sulfate (CdSO4) and zinc sulfate (ZnSO4) were transported from soil to roots and from roots to shoots more readily than their nano counterparts: cadmium sulfide quantum dots (CdS QD) and zinc sulfide quantum dots (ZnS QD). Compared to the CdS QD, he higher rate of transport of CdSO4 resulted in a greater negative effect on growth, chlorophyll content, antioxidant properties, lipid peroxidation and activation of antioxidant defence systems. Although ZnSO4 was transported more rapidly than ZnS QD, the overall effect of Zn addition was positive (increase in total plant mass, stem length, antioxidant content and decrease in lipid peroxidation). However, these effects were more pronounced in the case of ZnS QD, suggesting that the mechanisms underpinning the activity of ZnS QD and ZnSO4 were different. Thus, the risk of phytotoxicity and food chain transfer of the two elements depended on their form (salt or nanoform), and consequently their effects on plants' growth and physiology were different.


This work elucidates the mechanisms underlying the responses of CdS QD and ZnS QD in contrast to those of their corresponding salts on tomato plants. Our results showed that faster transport from roots to leaves in the case of salts in respect to the nanoform augment their detrimental impact on tomato's antioxidant properties and growth and make the nanoform of both a better alternative for crop application either as fertilizers or as pesticides.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Solanum lycopersicum , Sulfetos , Antioxidantes , Clorofila , Sais , Biodegradação Ambiental
5.
Plant Physiol Biochem ; 203: 108052, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37778113

RESUMO

The addition of biochars and nanoparticles with adsorbed Azotobacter vinelandii and Bacillus megaterium alleviated damage from Fusarium infection in both tomato (Solanum lycopersicum) and watermelon (Citrullus lanatus) plants. Tomato and watermelon plants were grown in greenhouse for 28 and 30 days (respectively) and were treated with either nanoparticles (chitosan-coated mesoporous silica or nanoclay) or varying biochars (biochar produced by pyrolysis, gasification and pyrogasification). Treatments with nanoparticles and biochars were applied in two variants - with or without adsorbed plant-growth promoting bacteria (PGPR). Chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria increased chlorophyll content in infected tomato and watermelon plants (1.12 times and 1.63 times, respectively) to a greater extent than nanoclay with adsorbed bacteria (1.10 times and 1.38 times, respectively). However, the impact on other endpoints (viability of plant cells, phosphorus and nitrogen content, as well antioxidative status) was species-specific. In all cases, plants treated with adsorbed bacteria responded better than plants without bacteria. For example, the content of antioxidative compounds in diseased watermelon plants increased nearly 46% upon addition of Aries biochar and by approximately 52% upon addition of Aries biochar with adsorbed bacteria. The overall effect on disease suppression was due to combination of the antifungal effects of both nanoparticles (and biochars) and plant-growth promoting bacteria. These findings suggest that nanoparticles or biochars with adsorbed PGPR could be viewed as a novel and sustainable solution for management of Fusarium wilt.


Assuntos
Quitosana , Citrullus , Fusarium , Nanopartículas , Solanum lycopersicum , Quitosana/farmacologia , Bactérias , Dióxido de Silício/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
6.
Nanomaterials (Basel) ; 13(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446460

RESUMO

Research on the effects of engineered nanomaterials (ENMs) on mitochondria, which represent one of the main actors in cell function, highlighted effects on ROS production, gametogenesis and organellar genome replication. Specifically, the mitochondrial effects of cadmium sulfide quantum dots (CdS QDs) exposure can be observed through the variation in enzymatic kinetics at the level of the respiratory chain and also by analyzing modifications of reagent and products in term of the bonds created and disrupted during the reactions through Fourier-transform infrared spectroscopy (FTIR). This study investigated both in intact cells and in isolated mitochondria to observe the response to CdS QDs treatment at the level of electron transport chain in the wild-type yeast Saccharomyces cerevisiae and in the deletion mutant Δtom5, whose function is implicated in nucleo-mitochondrial protein trafficking. The changes observed in wild type and Δtom5 strains in terms of an increase or decrease in enzymatic activity (ranging between 1 and 2 folds) also differed according to the genetic background of the strains and the respiratory chain functionality during the CdS QDs treatment performed. Results were confirmed by FTIR, where a clear difference between the QD effects in the wild type and in the mutant strain, Δtom5, was observed. The utilization of these genetic and biochemical approaches is instrumental to clarify the mitochondrial mechanisms implicated in response to these types of ENMs and to the stress response that follows the exposure.

8.
Environ Pollut ; 318: 120834, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493932

RESUMO

Research on engineered nanomaterials (ENMs) exposure has continued to expand rapidly, with a focus on uncovering the underlying mechanisms. The EU largely limits the number and the type of organisms that can be used for experimental testing through the 3R normative. There are different routes through which ENMs can enter the soil-plant system: this includes the agricultural application of sewage sludges, and the distribution of nano-enabled agrochemicals. However, a thorough understanding of the physiological and molecular implications of ENMs dispersion and chronic low-dose exposure remains elusive, thus requiring new evidence and a more mechanistic overview of pathways and major effectors involved in plants. Plants can offer a reliable alternative to conventional model systems to elucidate the concept of ENM biotransformation within tissues and organs, as a crucial step in understanding the mechanisms of ENM-organism interaction. To facilitate the understanding of the physico-chemical forms involved in plant response, synchrotron-based techniques have added new potential perspectives in studying the interactions between ENMs and biota. These techniques are providing new insights on the interactions between ENMs and biomolecules. The present review discusses the principal outcomes for ENMs after intake by plants, including possible routes of biotransformation which make their final fate less uncertain, and therefore require further investigation.


Assuntos
Nanoestruturas , Nanoestruturas/química , Plantas/metabolismo , Biotransformação
9.
Front Plant Sci ; 14: 1297569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250438

RESUMO

Global agricultural production must double by 2050 to meet the demands of an increasing world human population but this challenge is further exacerbated by climate change. Environmental stress, heat, and drought are key drivers in food security and strongly impacts on crop productivity. Moreover, global warming is threatening the survival of many species including those which we rely on for food production, forcing migration of cultivation areas with further impoverishing of the environment and of the genetic variability of crop species with fall out effects on food security. This review considers the relationship of climatic changes and their bearing on sustainability of natural and agricultural ecosystems, as well as the role of omics-technologies, genomics, proteomics, metabolomics, phenomics and ionomics. The use of resource saving technologies such as precision agriculture and new fertilization technologies are discussed with a focus on their use in breeding plants with higher tolerance and adaptability and as mitigation tools for global warming and climate changes. Nevertheless, plants are exposed to multiple stresses. This study lays the basis for the proposition of a novel research paradigm which is referred to a holistic approach and that went beyond the exclusive concept of crop yield, but that included sustainability, socio-economic impacts of production, commercialization, and agroecosystem management.

10.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500857

RESUMO

Hyperaccumulator plant species growing on metal-rich soils can accumulate high quantity of metals and metalloids in aerial tissues, and several proteomic studies on the molecular mechanisms at the basis of metals resistance and hyperaccumulation have been published. Hyperaccumulator are also at the basis of the phytoremediation strategy to remove metals more efficiently from polluted soils or water. Arabidopsis halleri and Noccea caerulescens are both hyperaccumulators of metals and nano-metals. In this study, the change in some proteins in A. halleri and N. caerulescens was assessed after the growth in soil with cadmium and zinc, provided as sulphate salts (CdSO4 and ZnSO4) or sulfide quantum dots (CdS QDs and ZnS QDs). The protein extracts obtained from plants after 30 days of growth were analyzed by 2D-gel electrophoresis (2D SDS-PAGE) and identified by MALDI-TOF/TOF mass spectrometry. A bioinformatics analysis was carried out on quantitative protein differences between control and treated plants. In total, 43 proteins resulted in being significatively modulated in A. halleri, while 61 resulted in being modulated in N. caerulescens. Although these two plants are hyperaccumulator of both metals and nano-metals, at protein levels the mechanisms involved do not proceed in the same way, but at the end bring a similar physiological result.

11.
Nanomaterials (Basel) ; 12(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558327

RESUMO

The potential of biochar and nanoparticles to serve as effective delivery agents for beneficial bacteria to crops was investigated. Application of nanoparticles and biochar as carriers for beneficial bacteria improved not only the amount of nitrogen-fixing and phosphorus-solubilizing bacteria in soil, but also improved chlorophyll content (1.2-1.3 times), cell viability (1.1-1.5 times), and antioxidative properties (1.1-1.4 times) compared to control plants. Treatments also improved content of phosphorus (P) (1.1-1.6 times) and nitrogen (N) (1.1-1.4 times higher) in both tomato and watermelon plants. However, the effect of biochars and nanoparticles were species-specific. For example, chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria increased the phosphorus content in tomato by 1.2 times compared to a 1.1-fold increase when nanoclay with adsorbed bacteria was applied. In watermelon, the situation was reversed: 1.1-fold increase in the case of chitosan-coated mesoporous silica nanoparticles and 1.2 times in case of nanoclay with adsorbed bacteria. Our findings demonstrate that use of nanoparticles and biochar as carriers for beneficial bacteria significantly improved plant growth and health. These findings are useful for design and synthesis of novel and sustainable biofertilizer formulations.

12.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555489

RESUMO

The work focused on the analysis of two cultivars of tomato (Solanum lycopersicum L.), Aragon and Gladis, under two different treatments of silicon, Low, 2 L of 0.1 mM CaSiO3, and High, 0.5 mM CaSiO3, weekly, for 8 weeks, under stress-free conditions. We subsequently analyzed the morphology, chemical composition, and elemental distribution using synchrotron-based µ-XRF techniques, physiological, and molecular aspects of the response of the two cultivars. The scope of the study was to highlight any significant response of the plants to the Si treatments, in comparison with any response to Si of plants under stress. The results demonstrated that the response was mainly cultivar-dependent, also at the level of mitochondrial-dependent oxidative stress, and that it did not differ from the two conditions of treatments. With Si deposited mainly in the cell walls of the cells of fruits, leaves, and roots, the treatments did not elicit many significant changes from the point of view of the total elemental content, the physiological parameters that measured the oxidative stress, and the transcriptomic analyses focalized on genes related to the response to Si. We observed a priming effect of the treatment on the most responsive cultivar, Aragon, in respect to future stress, while in Gladis the Si treatment did not significantly change the measured parameters.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Silício/farmacologia , Síncrotrons , Estresse Oxidativo , Perfilação da Expressão Gênica
13.
Nanomaterials (Basel) ; 12(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808044

RESUMO

In the last decades, nanotechnology-based tools have attracted attention in the scientific community, due to their potential applications in different areas from medicine to engineering, but several toxicological effects mediated by these advanced materials have been shown on the environment and human health. At present, the effects of engineered nanomaterials on gametogenesis have not yet been well understood. In the present study, we addressed this issue using the yeast Saccharomyces cerevisiae as a model eukaryote to evaluate the effects of cadmium sulfide quantum dots (CdS QDs) on sporulation, a process equivalent to gametogenesis in higher organisms. We have observed that CdS QDs cause a strong inhibition of spore development with the formation of aberrant, multinucleated cells. In line with these observations, treatment with CdS QDs down-regulates genes encoding crucial regulators of sporulation process, in particular, the transcription factor Ndt80 that coordinates different genes involved in progression through the meiosis and spore morphogenesis. Down-regulation of NDT80 mediated by CdS QDs causes a block of the meiotic cell cycle and a return to mitosis, leading to the formation of aberrant, multinucleated cells. These results indicate that CdS QDs inhibit gametogenesis in an irreversible manner, with adverse effects on cell-cycle progression.

14.
Nanomaterials (Basel) ; 12(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808070

RESUMO

The possibility that engineered manufactured nanomaterials (ENMs) can be harmful to the genetic materials of living individuals has been highlighted in several experiments, but it is still controversial [...].

15.
Sci Total Environ ; 839: 156265, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643132

RESUMO

Biochar is recognized as an efficient amendment and soil improver. However, environmental and quality assessments are needed to ensure the sustainability of its use in agriculture. This work considers the biochar's chemical-physical characterization and its potential phyto- and geno-toxicity, assessed with germination and Ames tests, obtaining valuable information for a safe field application. Three biochar types, obtained from gasification at different temperatures of green biomasses from the Tuscan-Emilian Apennines (in Italy), were compared through a broad chemical, physical and biological evaluation. The results obtained showed the relevance of temperature in determining the chemical and morphological properties of biochar, which was shown with several analytical techniques such as the elemental composition, water holding capacity, ash content, but also with FTIR and X-ray spectroscopies. These techniques showed the presence of different relevant surface aliphatic and aromatic groups. The procedures for evaluating the potential toxicity using seeds germination and Ames genotoxicity assay highlights that biochar does not cause detrimental effects when it enters in contact with soil, micro- and macro-organisms, and plants. The genotoxicity test provided a new highlight in evaluating biochar environmental safety.


Assuntos
Carvão Vegetal , Madeira , Biomassa , Carvão Vegetal/química , Solo/química , Madeira/química
16.
Data Brief ; 42: 108171, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35496479

RESUMO

The article describes: growth phenotypes of the four plant species (Noccaea caerulescens, Thlaspi perfoliatum, Arabidopsis halleri, Arabidopsis thaliana) before and after the treatment with ionic and nanoscale Zn and Cd (Fig. 1); the method of synthesis and characterization of ZnS QDs and CdS QDs (Fig. 2); the genetic characterization (performed with molecular markers) of the four plant species, their relative genecological relation (Fig. 3); a conceptual workflow designed to detect the amount of ionic Zn and Cd in the original solution/suspension used for the treatment (Fig. 4); the determination of Zn and Cd in the treatment soils after 30 days from supplement of ionic and nanoscale Zn and Cd (Fig. 5); the effect of the treatment on root elongation (Fig. 6); a workflow of a novel analytical method designed to detect the ionic and nanoscale Zn and Cd in the plant tissues after digestion with three different methods (Fig. 7); a reconstruction experiments with an exsiccated powder of plant tissue spiked with the same amount of Zn in the ionic and nanoscale forms (Fig. 8); a TEM-EDX analysis on these powdered plant tissues after removal of all soluble (ionic) Zn to show the presence of Zn in a non soluble form (nanoscale) (Fig. 9); the calculation of Bioconcentration Factor (BCF) and Translocation Factor (TF) and their ratios (Table 1); all data of the "spiking" experiments (Tables 2 and 3).

17.
Nanomaterials (Basel) ; 12(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630879

RESUMO

In recent years, plant-nanomaterial interactions have been studied, highlighting their effects at physiological and molecular levels. Transcriptomics and proteomics studies have shown pathways and targets of nanomaterial exposure and plant response, with particular regard to abiotic stress and oxidative stress. Only little information has been reported on engineered nanomaterial (ENMs) interactions with plant genetic material, both at a genomic and organellar DNAs level. Plants can be useful experimental material, considering they both contain chloroplast and mitochondrial DNAs and several plant genomes have been completely sequenced (e.g., Arabidopsis thaliana, Solanum lycoperiscum, Allium cepa, Zea mays, etc.). In this mini review, the methods and the evidence reported in the present literature concerning the level of genotoxicity induced by ENMs exposure have been considered. Consolidated and potential strategies, which can be applied to assess the nanomaterial genotoxicity in plants, are reviewed.

18.
ACS Nano ; 16(2): 2249-2260, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35048688

RESUMO

Mitochondria and chloroplasts not only are cellular energy sources but also have important regulatory and developmental roles in cell function. CeO2, FeOx ENMs, ZnS, CdS QDs, and relative metal salts were utilized in Murashige-Skoog (MS) synthetic growth medium at different concentrations (80-500 mg L-1) and times of exposures (0-20 days). Analysis of physiological and molecular response of A. thaliana chloroplasts and mitochondrion demonstrates that ENMs increase or decrease functionality and organelle genome replication. Exposure to nanoscale CeO2 and FeOx causes an 81-105% increase in biomass, whereas ZnS and CdS QDs yielded neutral or a 59% decrease in growth, respectively. Differential effects between ENMs and their corresponding metal salts highlight nanoscale-specific response pathways, which include energy production and oxidative stress response. Differences may be ascribed to ENM and the metal salt dissolution rate and the toxicity of the metal ion, which suggests eventual biotransformation processes occurring within the plant. With regard to specific effects on plastid (pt) and mitochondrial (mt) DNA, CdS QD exposure triggered potential variations at the substoichiometric level in the two organellar genomes, while nanoscale FeOx and ZnS QDs caused a 1- to 3-fold increase in ptDNA and mtDNA copy numbers. Nanoparticle CeO2 exposure did not affect ptDNA and mtDNA stoichiometry. These findings suggest that modification in stoichiometry is a potential morpho-functional adaptive response to ENM exposure, triggered by modifications of bioenergetic redox balance, which leads to reducing the photosynthesis or cellular respiration rate.


Assuntos
Arabidopsis , Nanoestruturas , Arabidopsis/genética , Cloroplastos/metabolismo , Mitocôndrias/genética , Nanoestruturas/toxicidade , Plastídeos/genética , Plastídeos/metabolismo
19.
Sci Total Environ ; 817: 152741, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990684

RESUMO

Metal hyperaccumulating plant species are an interesting example of natural selection and environmental adaptation but they may also be useful to developing new technologies of environmental monitoring and remediation. Noccaea caerulescens and Arabidopsis halleri are both Brassicaceae and are known metal hyperaccumulators. This study evaluated tolerance, uptake and translocation of zinc sulfide quantum dots by N. cearulescens and cadmium sulfide quantum dots by A. halleri in direct comparison with the non-hyperaccumulator, genetically similar T. perfoliatum and A. thaliana. Growth media were supplied with two different concentrations of metal in either salt (ZnSO4 and CdSO4) or nanoscale form (ZnS QDs and CdS QDs). After 30 days of exposure, the concentration of metals in the soil, roots and leaves was determined. Uptake and localization of the metal in both nanoscale and non-nanoscale form inside plant tissues was investigated by Environmental Scanning Electron Microscopy (ESEM) equipped with an X-ray probe. Specifically, the hyperaccumulators in comparison with the non-hyperaccumulators accumulate ionic and nanoscale Zn and Cd in the aerial parts with a BCF ratio of 45.9 for Zn ion, 49.6 for nanoscale Zn, 2.64 for Cd ion and 2.54 for nanoscale Cd. Results obtained with a differential extraction analytical procedure also showed that a significant fraction of nanoscale metals remained inside the plants in a form compatible with the retention of at least a partial initial structure. The molecular consequences of the hyperaccumulation of nanoscale materials are discussed considering data obtained with hyperaccumulation of ionic metal. This is the first report of conventional hyperaccumulating plants demonstrating an ability to hyperaccumulate also engineered nanomaterials (ENMs) and suggests a potential novel strategy for not only understanding plant-nanomaterial interactions but also for potential biomonitoring in the environment to avoid their entering into the food chains.


Assuntos
Arabidopsis , Brassicaceae , Nanopartículas , Cádmio , Raízes de Plantas , Zinco
20.
Environ Sci Pollut Res Int ; 29(20): 29314-29331, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34661843

RESUMO

The ability of tobacco (Nicotiana tabacum L. cv. Badischer Geudertheimer) for phytomanaging and remediating soil ecological functions at a contaminated site was assessed with a potted soil series made by fading an uncontaminated sandy soil with a contaminated sandy soil from the Borifer brownfield site, Bordeaux, SW France, at the 0%, 25%, 50%, 75%, and 100% addition rates. Activities of sandblasting and painting with metal-based paints occurred for decades at this urban brownfield, polluting the soil with metal(loid)s and organic contaminants, e.g., polycyclic aromatic hydrocarbons, in addition to past backfilling. Total topsoil metal(loid)s (e.g., 54,700 mg Zn and 5060 mg Cu kg-1) exceeded by seven- to tenfold the background values for French sandy soils, but the soil pH was 7.9, and overall, the 1M NH4NO3 extractable soil fractions of metals were relatively low. Leaf area, water content of shoots, and total chlorophyll (Chl) progressively decreased with the soil contamination, but the Chl fluorescence remained constant near its optimum value. Foliar Cu and Zn concentrations varied from 17.8 ± 4.2 (0%) to 27 ± 5 mg Cu kg-1 (100%) and from 60 ± 15 (0%) to 454 ± 53 mg Zn kg-1 (100%), respectively. Foliar Cd concentration peaked up to 1.74 ± 0.09 mg Cd kg-1, and its bioconcentration factor had the highest value (0.2) among those of the metal(loid)s. Few nutrient concentrations in the aboveground plant parts decreased with the soil contamination, e.g., foliar P concentration from 5972 ± 1026 (0%) to 2861 ± 334 mg kg-1 (100%). Vulnerability to drought-induced embolism (P50) did not differ for the tobacco stems across the soil series, whereas their hydraulic efficiency (Ks) declined significantly with increasing soil contamination. Overall, this tobacco cultivar grew relatively well even in the Borifer soil (100%), keeping its photosynthetic system healthy under stress, and contaminant exposure did not increase the vulnerability of the vascular system to drought. This tobacco had a relevant potential to annually phytoextract a part of the bioavailable soil Zn and Cd, i.e., shoot removals representing here 8.8% for Zn and 43.3% for Cd of their 1M NH4NO3 extractable amount in the potted Borifer soil.


Assuntos
Poluentes do Solo , Solo , Biodegradação Ambiental , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA