Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38402485

RESUMO

OBJECTIVES: Aortic valve repair requires the creation of a normal geometry of cusps and aortic root. Of the different dimensions, geometric cusp height is the most difficult to change while annular and sinotubular dimensions can be easily modified. The objective of this study was to investigate, by computer simulation, ideal combinations of annular and sinotubular junction size for a given geometric height. METHODS: Based on a literature review of anatomical data, a computational biomechanics model was generated for a tricuspid aortic valve. We aimed to determine the ideal relationships for the root dimensions, keeping geometric height constant and creating different combinations of the annular and sinotubular junction dimensions. Using this model, 125 virtual anatomies were created, with 25 different combinations of annulus and sinotubular junction. Effective height, coaptation height and mechanical cusp stress were calculated with the valves in closed configuration. RESULTS: Generally, within the analysed range of geometric heights, changes to the annular diameter yielded a stronger impact than sinotubular junction diameter changes for optimal valve configuration. The best results were obtained with the sinotubular junction being 2-4 mm larger than the annulus, leading to higher effective height, normal coaptation height and lower stress. Within the range tested, stenosis did not occur due to annular reduction. CONCLUSIONS: In tricuspid aortic valves, the geometric height can be used to predict ideal post-repair annular and sinotubular junction dimensions for optimal valve configuration. Such an ideal configuration is associated with reduced cusp stress.

2.
R Soc Open Sci ; 10(7): 230563, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37416831

RESUMO

Endovascular aortic aneurysm repair is a minimally invasive procedure with low mortality and morbidity. Clinical studies have revealed that a displacement force (DF) can cause stent graft (SG) migration in some circumstances requiring repeated intervention. This study aims to determine the relationship between the SG curvature and the calculated DF from four patient-specific computational fluid dynamics models. The SG's curvature was defined according to the centrelines of the implanted SG's branches. The centrelines were defined as either intersecting or separated lines. The centreline curvature (CLC) metrics were calculated based on the local curvature radii and the distances from the centrelines of idealized straight branches. The average CLC value and average variation were calculated to represent the entire graft's curvature. These CLC calculations were compared, and the method that gave the best correlation to the calculated DF was found. The optimal correlation is obtained from calculating the CLC average variation using separated centrelines and distance from straight lines, with an R2 = 0.89. Understanding the relationship between vascular morphology and DF can help identify at-risk patients before the procedure. In these cases, we can provide appropriate treatment and follow up with the patient to prevent future failure.

3.
R Soc Open Sci ; 10(7): 230142, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476520

RESUMO

Increased cardiac stiffness hinders proper left ventricular (LV) expansion, resulting in decreased volume and diastolic dysfunction. LV expanders are spring-like devices designed to improve diastolic function by facilitating mechanical outward expansion. Implantations in animals and humans have shown promising results, yet further evaluation is needed to assess a range of functions and the risk of use. In this computational study, the effectiveness and potential use of a generic LV expander were assessed by using previously generated finite-element models of induced heart failure with preserved ejection fraction (HFpEF). Following implantation, the treated models were compared to the corresponding untreated and healthy pre-induction models. The influence of device orientation and its material properties was also examined. Our results demonstrated a reduction in LV pressure and a volumetric improvement. Computed LV stresses have shown no gross irregularities. The device contributed to stress elevation during diastole while having a minor effect during systole, supporting a basic safety profile. This is the first study to use numerical analysis to assess LV expanders' performance on different HFpEF phenotypes. Improvement in heart function was demonstrated in both subjects, suggesting its potential use in various HFpEF manifestations, yet customization and optimal deployment are essential to improve heart performance.

4.
J Mech Behav Biomed Mater ; 136: 105516, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36215769

RESUMO

In recent years, several transcatheter systems have been introduced for treatment of common mitral regurgitation (MR). Such a system that is based on indirect mitral annuloplasty (IMA) is currently indicated for functional MR. Very few clinical studies have been performed to assess the efficiency and durability of such devices, despite their high risk of fracture resulting from ongoing exposure to large cyclic deformations. In this study, numerical models of moderate primary MR were created to test the implantation procedure of a customized IMA device and its sealing efficiency. The ability of the implanted device to reduce systolic leakage was evaluated and affirmed with a model of a more generic device. The long-term durability of the device was tested using a range of Nickel Titanium material properties. Our results demonstrated a considerable reduction in leakage for both the simplified generic device and the more detailed customized device models. The device met different fatigue criteria, confirming its resiliency and safety even after 10 years, even under the harsher conditions of primary MR. This is the first study to assess the performance and fatigue risk of IMA devices for the treatment of more complicated MR conditions. These findings may pave the way for further research to ultimately consider the device in selective cases of PMR.


Assuntos
Próteses Valvulares Cardíacas , Anuloplastia da Valva Mitral , Insuficiência da Valva Mitral , Humanos , Anuloplastia da Valva Mitral/métodos , Resultado do Tratamento , Insuficiência da Valva Mitral/cirurgia , Desenho de Prótese
5.
Placenta ; 129: 15-22, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183458

RESUMO

INTRODUCTION: This study proposes a computational fluid dynamics model of a human placenta's independent exchange unit (placentome) to assess the effect that the inner villi distribution and decidual veins (DVs) location and number, have on the oxygen uptake. METHODS: The internal placentome porosity distribution was altered in symmetric morphology, while asymmetry was introduced by varying the location and number of DVs. The DV asymmetry was introduced by either displacing them circumferentially, thereby changing the angle between them, or by adding DVs in the inlet cross-section. The results were analyzed by the changes in the normalized oxygen mass fraction and the oxygen uptake. RESULTS: Oxygenated blood was shown to be delivered deeper into the placentome when the area of non-homogeneous porosity was larger. The largest oxygen uptake was achieved in the asymmetric model with the smallest angle distance between the DVs, where a 10% decrease relative to the farthest case was obtained. Placing DVs adjacent to the spiral artery opening enhanced the drainage of oxygenated blood. DISCUSSION: This study demonstrates the importance of the local porosity distribution for the proper perfusion of the intervillous space and proposes a novel approach to improve our understanding of the role of the DVs in placental oxygen uptake.


Assuntos
Córion , Placenta , Humanos , Gravidez , Feminino , Placenta/irrigação sanguínea , Porosidade , Oxigênio , Perfusão
6.
Front Bioeng Biotechnol ; 10: 1032034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312535

RESUMO

A substantial proportion of heart failure patients have a preserved left ventricular (LV) ejection fraction (HFpEF). This condition carries a high burden of morbidity and mortality and has limited therapeutic options. left ventricular pressure overload leads to an increase in myocardial collagen content, causing left ventricular stiffening that contributes to the development of heart failure patients have a preserved left ventricular ejection fraction. Although several heart failure patients have a preserved left ventricular ejection fraction models have been developed in recent years to aid the investigation of mechanical alterations, none has investigated different phenotypes of the disease and evaluated the alterations in material properties. In this study, two similar healthy swine were subjected to progressive and prolonged pressure overload to induce diastolic heart failure characteristics, providing a preclinical model of heart failure patients have a preserved left ventricular ejection fraction. Cardiac magnetic resonance imaging (cMRI) scans and intracardiac pressures were recorded before and after induction. In both healthy and disease states, a corresponding finite element (FE) cardiac model was developed via mesh morphing of the Living Heart Porcine model. The material properties were derived by calibrating to its passive and active behavior. The change in the passive behavior was predominantly isotropic when comparing the geometries before and after induction. Myocardial thickening allowed for a steady transition in the passive properties while maintaining tissue incompressibility. This study highlights the importance of hypertrophy as an initial compensatory response and might also pave the way for assessing disease severity.

7.
R Soc Open Sci ; 9(1): 211464, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35242347

RESUMO

Mitral valve regurgitation (MR) is a common valvular heart disease where an improper closure leads to leakage from the left ventricle into the left atrium. There is a need for less-invasive treatments such as percutaneous repairs for a large inoperable patient population. The aim of this study is to compare several indirect mitral annuloplasty (IMA) percutaneous repair techniques by finite-element analyses. Two types of generic IMA devices were considered, based on coronary sinus vein shortening (IMA-CS) to reduce the annulus perimeter and based on shortening of the anterior-posterior diameter (IMA-AP). The disease, its treatments, and the heart function post-repair were modelled by modifying the living heart human model (Dassault Systèmes). A functional MR pathology that represents ischaemic MR was generated and the IMA treatments were simulated in it, followed by heart function simulations with the devices and leakage quantification from blood flow simulations. All treatments were able to reduce leakage, the IMA-AP device achieved better sealing, and there was a correlation between the IMA-CS device length and the reduction in leakage. The results of this study can help in bringing IMA-AP to market, expanding the use of IMA devices, and optimizing future designs of such devices.

8.
J Mech Behav Biomed Mater ; 126: 104937, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979481

RESUMO

Numerical modeling of heart biomechanics can realistically capture morphological variations in diseases and has been helpful in advancing our understanding of the physiology. Subject-specific models require anatomic representation of medical images, and it is desirable to have a consistently repeatable models for any given morphology. In this study, we propose a novel and easily adaptable cardiac reconstruction algorithm by morphing an existing discretized mesh of an advanced finite element (FE) model, to match anatomies acquired from porcine cardiac magnetic resonance imaging (cMRI) scans. The morphing algorithm involves iterative FE simulations with visco-hyperelastic material properties. The living heart porcine model (LHPM) was chosen as the input baseline FE mesh, in order to preserve detailed anatomical features that cannot be captured in routine scans such as myofiber orientations and conduction pathways. The algorithm was demonstrated for the recreation of porcine hearts of a healthy subject and of a subject induced with heart failure with preserved ejection fraction (HFpEF) conditions, where there were substantial hypertrophy and anatomical alterations. We further used the morphed meshes for FE modeling of cardiac contraction and relaxation, thus demonstrating the applicability of the proposed algorithm in producing viable meshes. The results show that our algorithm can recreate the characteristic anatomical changes of cardiac remodeling, including heart muscle thickening, as well as replicate the reduction in ventricular volume. This algorithm allows for the creation of subject-specific models with the same mesh connectivity, thus enabling spatial comparison and analysis of pathologic progress.


Assuntos
Insuficiência Cardíaca , Algoritmos , Animais , Análise de Elementos Finitos , Volume Sistólico , Telas Cirúrgicas , Suínos
9.
J Neurotrauma ; 38(15): 2176-2185, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33971729

RESUMO

Spinal cord injury (SCI) is commonly caused by traumatic mechanical damage. Although numerical models can help predict the mechanics of SCI without putting the subjects in danger, previous studies did not focus on alternations in cerebrospinal fluid (CSF) pressure and did not account for the presence of epidural fat. This study aims to numerically compare the mechanical behavior of the human spine when subjected to contusion and burst fracture with varying CSF pressure, either normal or elevated pressure that represents intracranial hypertension. An additional aim is to find out how the presence of the fat in the model affects the SCI calculations. CSF and epidural fat were modeled as smoothed-particle hydrodynamics (SPH) and the soft tissues were modeled as hyperelastic. This approach made it possible to account for CSF pressure alteration and its effect on the cord. Validation models resulted in good correlation with previous numerical and experimental studies. The results were able to capture the fluid dynamics of the CSF while demonstrating a considerable change in the stresses of the spinal cord. The comparison of the CSF pressures demonstrated that SCI in patients with elevated pressure and in regions where insufficient epidural fat exists might lead to higher spinal cord stresses. Yet, in regions with enough fat, the fat can absorb energy and counteract the effect of the elevated pressure. These results indicate important aspects that need to be accounted for in future numerical models of SCI while also demonstrating how the injury might be aggravated by preexisting conditions.


Assuntos
Tecido Adiposo , Pressão do Líquido Cefalorraquidiano/fisiologia , Espaço Epidural , Modelos Biológicos , Traumatismos da Medula Espinal , Humanos
10.
Innovations (Phila) ; 16(4): 327-333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33818178

RESUMO

OBJECTIVE: Mitral valve regurgitation (MR) is a common valvular heart disease where improper closing causes leakage. Currently, no transcatheter mitral valve device is commercially available. Raanani (co-author) and colleagues have previously proposed a unique rotational implantation, ensuring anchoring by metallic arms that pull the chordae tendineae. This technique is now being implemented in a novel device design. The aim of this study is to quantify the rotational implantation effect on the mitral annulus kinematics and on the stresses in the chordae and papillary muscles. METHODS: Finite element analysis of the rotational step of the implantation in a whole heart model is employed to compare 5 arm designs with varying diameters (25.9 mm to 32.4 mm) and rotation angles (up to 140°). The arm rotation that grabs the chordae was modeled when the valve was in systolic configuration. RESULTS: An increase in the rotation angle results in reduced mitral annulus perimeters. Larger rotation angles led to higher chordae stresses with the 29.8 mm experiencing the maximum stresses. The calculated chordae stresses suggest that arm diameter should be <27.8 mm and the rotation angle <120°. CONCLUSIONS: The upper limit of this diameter range is preferred in order to reduce the stresses in the papillary muscles while grabbing more chords. The findings of this study can help improving the design and performance of this unique device and procedural technique.


Assuntos
Insuficiência da Valva Mitral , Valva Mitral , Fenômenos Biomecânicos , Cordas Tendinosas/cirurgia , Humanos , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/cirurgia , Músculos Papilares
11.
J Biomech ; 118: 110309, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33601181

RESUMO

Subclinical leaflet thrombosis is becoming a major concern in valve-in-valve procedures, whereby a transcatheter aortic valve device is deployed inside a failed bioprosthetic surgical valve. Blood flow stagnation and prolonged residence times in the neo-sinuses have been suggested as possible explanations for leaflet thrombosis. The BASILICA technique, which was originally developed to treat coronary flow obstruction, has also been proposed as an alternative to reduce the risk of thrombus formation. The aim of this study is to understand the impact of BASILICA on the valve-in-valve thrombogenicity using computational fluid dynamics simulations. To this end, two Eulerian and two Lagrangian approaches were employed to estimate near-wall stagnation measures in eight valve-in-valve models. The models included an intact or lacerated Sorin Mitroflow surgical valve, and either a SAPIEN or Evolut transcatheter aortic valve device. The Lagrangian approaches predicted a high number of particles and vortices concentration in the proximal areas of the neo-sinuses, while the Eulerian approaches did so in the distal areas. As a consequence, this study demonstrated that Lagrangian approaches are better predictors of subclinical leaflet thrombosis, since they match experimental and clinical findings. Additionally, the SAPIEN valve possess a higher risk for developing leaflet thrombosis, and two lacerations are shown to provide the best results in terms of development of vortices and accumulation of particles within the neo-sinuses. This study highlights the potential of computational modeling in aiding clinicians in their decision-making in valve-in-valve and BASILICA procedures.


Assuntos
Estenose da Valva Aórtica , Bioprótese , Próteses Valvulares Cardíacas , Trombose , Substituição da Valva Aórtica Transcateter , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Próteses Valvulares Cardíacas/efeitos adversos , Humanos , Desenho de Prótese , Trombose/etiologia , Substituição da Valva Aórtica Transcateter/efeitos adversos , Resultado do Tratamento
12.
J Biomech ; 118: 110303, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33601185

RESUMO

Coronary artery obstruction (CAO), a fatal complication of transcatheter aortic valve replacement (TAVR), is commonly found after Valve-in-Valve implantation inside a degenerated bioprosthetic valve. Leaflet laceration (BASILICA technique) has been proposed to prevent CAO and to potentially reduce the risk of leaflet thrombosis. We have previously demonstrated that this technique can reduce the anchorage forces of the TAVR device, which may lead to future complications. In this short communication, we hypothesize that the anchorage force reduction can be minimized by implanting a TAVR with a larger diameter, if two sizes are clinically recommended. We evaluated this hypothesis by employing finite element models of the deployments of the Evolut 26 and 29 mm inside a 27 mm Mitroflow valve, with and without leaflet lacerations. The results show that a laceration substantially decreases the contact area between the Evolut stent and the Mitroflow valve. The larger Evolut has a larger contact area and stronger anchorage forces. Additionally, the anchorage forces are less sensitive to additional lacerations in the larger Evolut (29 case). The results suggest that a larger self-expending device can ensure stronger anchorage and can lower the risk of possible migration, when TAVR is performed in a lacerated bioprosthesis.


Assuntos
Estenose da Valva Aórtica , Bioprótese , Estenose Coronária , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Próteses Valvulares Cardíacas/efeitos adversos , Humanos , Desenho de Prótese , Substituição da Valva Aórtica Transcateter/efeitos adversos , Resultado do Tratamento
13.
Rambam Maimonides Med J ; 11(2)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32374253

RESUMO

Heart valve diseases are common disorders with five million annual diagnoses being made in the United States alone. All heart valve disorders alter cardiac hemodynamic performance; therefore, treatments aim to restore normal flow. This paper reviews the state-of-the-art clinical and engineering advancements in heart valve treatments with a focus on hemodynamics. We review engineering studies and clinical literature on the experience with devices for aortic valve treatment, as well as the latest advancements in mitral valve treatments and the pulmonic and tricuspid valves on the right side of the heart. Upcoming innovations will potentially revolutionize treatment of heart valve disorders. These advancements, and more gradual enhancements in the procedural techniques and imaging modalities, could improve the quality of life of patients suffering from valvular disease who currently cannot be treated.

14.
Biomech Model Mechanobiol ; 19(5): 1725-1740, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32095912

RESUMO

Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure that provides an effective alternative to open-heart surgical valve replacement for treating advanced calcific aortic valve disease patients. However, complications, such as valve durability, device migration, paravalvular leakage (PVL), and thrombogenicity may lead to increased overall post-TAVR morbidity and mortality. A series of numerical studies involving a self-expandable TAVR valve were performed to evaluate these complications. Structural studies were performed with finite element (FE) analysis, followed by computational fluid dynamics (CFD) simulations, and fluid-structure interaction (FSI) analysis. The FE analysis was utilized to study the effect of TAVR valve implantation depth on valve anchorage in the Living Heart Human Model, which is capable of simulating beating heart during repeated cardiac cycles. The TAVR deployment cases where no valve migration was observed were then used to calculate the post-deployment thrombogenic potential via CFD simulations. FSI analysis followed to further assess the post-deployment TAVR hemodynamic performance for different implantation depths. The deployed valves PVL, geometric and effective orifice areas, and the leaflets structural and flow stress magnitudes were compared to determine the device optimal landing zone. The combined structural and hemodynamic analysis indicated that with the TAVR valve deployed at an aft ventricle position an optimal performance was achieved in the specific anatomy studied. Given the TAVR's rapid expansion to younger lower-risk patients, the comprehensive numerical methodology proposed here can potentially be used as a predictive tool for both procedural planning and valve design optimization to minimize the reported complications.


Assuntos
Valva Aórtica/fisiopatologia , Valva Aórtica/cirurgia , Hemodinâmica/fisiologia , Análise Numérica Assistida por Computador , Substituição da Valva Aórtica Transcateter , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , Humanos , Hidrodinâmica , Stents , Estresse Mecânico , Trombose/fisiopatologia
15.
Biomech Model Mechanobiol ; 19(2): 779, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31965351

RESUMO

This is to inform that the original article was published without the "Conflict of Interest" statement.

16.
R Soc Open Sci ; 7(12): 201838, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33489295

RESUMO

Leaflet thrombosis has been suggested as the reason for the reduced leaflet motion in cases of hypoattenuated leaflet thickening of bioprosthetic aortic valves. This work aimed to estimate the risk of leaflet thrombosis in two post-valve-in-valve (ViV) configurations, using five different numerical approaches. Realistic ViV configurations were calculated by modelling the deployments of the latest version of transcatheter aortic valve devices (Medtronic Evolut PRO, Edwards SAPIEN 3) in the surgical Sorin Mitroflow. Computational fluid dynamics simulations of blood flow followed the dry models. Lagrangian and Eulerian measures of near-wall stagnation were implemented by particle and concentration tracking, respectively, to estimate the thrombogenicity and to predict the risk locations. Most of the numerical approaches indicate a higher leaflet thrombosis risk in the Edwards SAPIEN 3 device because of its intra-annular implantation. The Eulerian approaches estimated high-risk locations in agreement with the wall sheer stress (WSS) separation points. On the other hand, the Lagrangian approaches predicted high-risk locations at the proximal regions of the leaflets matching the low WSS magnitude regions of both transcatheter aortic valve implantation models and reported clinical and experimental data. The proposed methods can help optimizing future designs of transcatheter aortic valves with minimal thrombotic risks.

17.
Biomech Model Mechanobiol ; 19(2): 415-426, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31471756

RESUMO

Transcatheter aortic valve implantation (TAVI) is currently recommended in practice guidelines for patients who are at intermediate to high surgical risk for surgical aortic valve replacement. Coronary artery obstruction is a fatal complication of TAVI that occurs in up to 3.5% of the implantations inside a failed surgical bioprosthetic valve (valve-in-valve, ViV). A new technique to address this problem is intentional laceration of the bioprosthetic leaflets, known as BASILICA. In this technique, the leaflets are lacerated to prevent coronary obstruction and may also help in preventing leaflet thrombosis. Our hypothesis is that this technique may harm the circumferential stress in the surgical valve and weaken the anchorage of the TAVI device. This study aims to compare the anchorage post-ViV implantations, with and without lacerations, using numerical modelling. Deployments of TAVI stents (Medtronic Evolut PRO; Edwards SAPIEN 3) inside an externally mounted surgical bioprosthetic valve (Sorin Mitroflow) were modelled by finite element analysis. The results show that each laceration reduces the contact area of the TAVI stent with its landing zone and that the anchorage contact force weakens. The BASILICA technique has lesser effect on the anchorage contact area and forces in the SAPIEN than in the Evolut cases, because the balloon inflation is less sensitive to the deployment region. TAVI stent migration was not found in any of the models. These results can help expanding the use of leaflet laceration by choosing a better matched TAVI devices for the BASILICA technique.


Assuntos
Lacerações/patologia , Modelos Cardiovasculares , Stents , Substituição da Valva Aórtica Transcateter , Fenômenos Biomecânicos , Humanos , Estresse Mecânico
18.
Interface Focus ; 9(5): 20190037, 2019 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-31485319

RESUMO

Transport of nutrients and waste between the maternal and fetal circulations during pregnancy takes place at the final branches of the placental villous trees. Therefore, and unsurprisingly, pregnancy complications have been related to the maldevelopment of terminal villi. However, a deep analysis of placental villous morphology has been limited by tissue processing and imaging techniques. In this proof-of-principle study, placental lobules were fixed by perfusion and small clumps of villi were stained, sectioned optically and reconstructed. Morphological and network analyses were suggested and demonstrated on samples of normal placentas. The results show that most parameters are almost constant within a placenta but that there exists an inter-individual variation. Network analysis suggests that the feto-placental capillary network has several paths within an individual villus, serving as an efficient transport system. Three-dimensional reconstruction from confocal laser scanning microscopy images is a potent technique able to quantify placental architecture and capture the significant irregularities in vessel diameter and membrane thickness. This approach has the potential to become a powerful tool to further our understanding of the differences in placental structure which may underlie pregnancy complications.

19.
Med Biol Eng Comput ; 57(10): 2129-2143, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31372826

RESUMO

Calcific aortic valve disease (CAVD) is characterized by stiffened aortic valve leaflets. Bicuspid aortic valve (BAV) is the most common congenital heart disease. Transcatheter aortic valve replacement (TAVR) is a treatment approach for CAVD where a stent with mounted bioprosthetic valve is deployed on the stenotic valve. Performing TAVR in calcified BAV patients may be associated with post-procedural complications due to the BAV asymmetrical structure. This study aims to develop refined computational models simulating the deployments of Evolut R and PRO TAVR devices in a representative calcified BAV. The paravalvular leakage (PVL) was also calculated by computational fluid dynamics simulations. Computed tomography scan of severely stenotic BAV patient was acquired. The 3D calcium deposits were generated and embedded inside a parametric model of the BAV. Deployments of the Evolut R and PRO inside the calcified BAV were simulated in five bioprosthesis leaflet orientations. The hypothesis of asymmetric and elliptic stent deployment was confirmed. Positioning the bioprosthesis commissures aligned with the native commissures yielded the lowest PVL (15.7 vs. 29.5 mL/beat). The Evolut PRO reduced the PVL in half compared with the Evolut R (15.7 vs. 28.7 mL/beat). The proposed biomechanical computational model could optimize future TAVR treatment in BAV patients. Graphical abstract.


Assuntos
Estenose da Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/cirurgia , Valva Aórtica/anormalidades , Doenças das Valvas Cardíacas/fisiopatologia , Doenças das Valvas Cardíacas/cirurgia , Substituição da Valva Aórtica Transcateter , Idoso , Valva Aórtica/fisiopatologia , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico por imagem , Doença da Válvula Aórtica Bicúspide , Fenômenos Biomecânicos , Simulação por Computador , Elasticidade , Feminino , Análise de Elementos Finitos , Humanos , Hidrodinâmica , Modelos Cardiovasculares , Pressão , Stents , Tomografia Computadorizada por Raios X
20.
Biomech Model Mechanobiol ; 18(2): 435-451, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30460623

RESUMO

Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical valve replacement in high-risk patients afflicted by severe aortic stenosis. Despite newer-generation devices enhancements, post-procedural complications such as paravalvular leakage (PVL) and related thromboembolic events have been hindering TAVR expansion into lower-risk patients. Computational methods can be used to build and simulate patient-specific deployment of transcatheter aortic valves (TAVs) and help predict the occurrence and degree of PVL. In this study finite element analysis and computational fluid dynamics were used to investigate the influence of procedural parameters on post-deployment hemodynamics on three retrospective clinical cases affected by PVL. Specifically, TAV implantation depth and balloon inflation volume effects on stent anchorage, degree of paravalvular regurgitation and thrombogenic potential were analyzed for cases in which Edwards SAPIEN and Medtronic CoreValve were employed. CFD results were in good agreement with corresponding echocardiography data measured in patients in terms of the PVL jets locations and overall PVL degree. Furthermore, parametric analyses demonstrated that positioning and balloon over-expansion may have a direct impact on the post-deployment TAVR performance, achieving as high as 47% in PVL volume reduction. While the model predicted very well clinical data, further validation on a larger cohort of patients is needed to verify the level of the model's predictions in various patient-specific conditions. This study demonstrated that rigorous and realistic patient-specific numerical models could potentially serve as a valuable tool to assist physicians in pre-operative TAVR planning and TAV selection to ultimately reduce the risk of clinical complications.


Assuntos
Valva Aórtica/cirurgia , Simulação por Computador , Substituição da Valva Aórtica Transcateter , Velocidade do Fluxo Sanguíneo/fisiologia , Hemodinâmica/fisiologia , Humanos , Fluxo Sanguíneo Regional/fisiologia , Stents , Estresse Mecânico , Trombose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...