Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Anim Ecol ; 89(1): 93-103, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30762229

RESUMO

Wind energy production has expanded to meet climate change mitigation goals, but negative impacts of wind turbines have been reported on wildlife. Soaring birds are among the most affected groups with alarming fatality rates by collision with wind turbines and an escalating occupation of their migratory corridors. These birds have been described as changing their flight trajectories to avoid wind turbines, but this behaviour may lead to functional habitat loss, as suitable soaring areas in the proximity of wind turbines will likely be underused. We modelled the displacement effect of wind turbines on black kites (Milvus migrans) tracked by GPS. We also evaluated the impact of this effect at the scale of the landscape by estimating how much suitable soaring area was lost to wind turbines. We used state-of-the-art tracking devices to monitor the movements of 130 black kites in an area populated by wind turbines, at the migratory bottleneck of the Strait of Gibraltar. Landscape use by birds was mapped from GPS data using dynamic Brownian bridge movement models, and generalized additive mixed modelling was used to estimate the effect of wind turbine proximity on bird use while accounting for orographic and thermal uplift availability. We found that areas up to approximately 674 m away from the turbines were less used than expected given their uplift potential. Within that distance threshold, bird use decreased with the proximity to wind turbines. We estimated that the footprint of wind turbines affected 3%-14% of the areas suitable for soaring in our study area. We present evidence that the impacts of wind energy industry on soaring birds are greater than previously acknowledged. In addition to the commonly reported fatalities, the avoidance of turbines by soaring birds causes habitat losses in their movement corridors. Authorities should recognize this further impact of wind energy production and establish new regulations that protect soaring habitat. We also showed that soaring habitat for birds can be modelled at a fine scale using publicly available data. Such an approach can be used to plan low-impact placement of turbines in new wind energy developments.


Assuntos
Aves , Voo Animal , Animais , Mudança Climática , Ecossistema
3.
Polymers (Basel) ; 10(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30966293

RESUMO

Three anionic fluorene-based alternating conjugated polyelectrolytes (CPEs) have been synthesized that have 9,9-bis(4-phenoxy-butylsulfonate) fluorene-2,7-diyl and 1,4-phenylene (PBS-PFP), 4,4'-biphenylene (PBS-PFP2), or 4,4″-p-terphenylene (PBS-PFP3) groups, and the effect of the length of the oligophenylene spacer on their aggregation and photophysics has been studied. All form metastable dispersions in water, but can be solubilized using methanol, acetonitrile, or dioxane as cosolvents. This leads to increases in their emission intensities and blue shifts in fluorescence maxima due to break-up of aggregates. In addition, the emission maximum shifts to the blue and the loss of vibronic structure are observed when the number of phenylene rings is increased. Debsity Functional Theory (DFT) calculations suggest that this is due to increasing conformational flexibility as the number of phenylene rings increases. This is supported by increasing amplitude in the fast component in the fluorescence decay. The nonionic surfactant n-dodecylpentaoxyethylene glycol ether (C12E5) also breaks up aggregates, as seen by changes in fluorescence intensity and maximum. However, the loss in vibrational structure is less pronounced in this case, possibly due to a more rigid environment in the mixed surfactant-CPE aggregates. Further information on the aggregates formed with C12E5 was obtained by electrical conductivity measurements, which showed an initial increase in specific conductivity upon addition of surfactants, while at higher surfactant/CPE molar ratios a plateau was observed. The specific conductance in the plateau region decreased in the order PBS-PFP3 < PBS-PFP2 < PBS-PFP, in agreement with the change in charge density on the CPE. The reverse process of aggregate formation has been studied by injecting small volumes of solutions of CPEs dissolved at the molecular level in a good solvent system (50% methanol-water) into the poor solvent, water. Aggregation was monitored by changes in both fluorescence and light scattering. The rate of aggregation increases with hydrophobicity and concentration of sodium chloride but is only weakly dependent on temperature.

4.
J Phys Chem B ; 118(2): 613-23, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24359025

RESUMO

The interaction of the water-soluble conjugated polyelectrolyte (CPE) poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl} (PBS-PFP) (degree of polymerization, DP, ∼3-6) with various concentrations of a homologous series of oppositely charged amphiphilic phenylenevinylene oligomers was investigated in water:dioxane mixtures and in aqueous micellar solutions of the non-ionic surfactant n-dodecylpentaoxyethylene glycol ether. The excellent spectral overlap between the CPE fluorescence and the conjugated oligoelectrolyte (COE) absorption indicates that energy transfer between these is a highly favored process, and can be tuned by changing the COE chain length. This is supported by time-resolved fluorescence data. The overall results provide support for different types of self-assembly, which are sensitive to the solvent environment and to the size of the phenylenevinylene oligoelectrolyte chain. It is suggested that large aggregates are formed in water:dioxane mixtures, while decorated core-shell structures are present in the surfactant solutions.

5.
J Phys Chem B ; 116(25): 7548-59, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22554070

RESUMO

An anionic fluorene-phenylene poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl}-based copolymer containing on-chain perylenediimine (PDI) chromophoric units, PBS-PFP-PDI, was synthesized and its photophysical properties studied as aggregates and isolated chains in water and dioxane/water (1:1) solution. UV-vis and emission spectroscopy measurements, time-correlated single photon counting, and wide field imaging have been employed to investigate the excited-state behavior of the PBS-PFP-PDI copolymer, including the effect of environment on the energy and electron transfer to the on-chain PDI chromophore. Although the Förster overlap integral is favorable, no evidence is found for intramolecular singlet excitation energy transfer in isolated copolymer chains in solution. Fluorescence is suggested to involve an interchain process, thus revealing that isolated copolymer chains in solution do not undergo efficient intramolecular energy transfer. However, quenching of the PBS-PFP excited state by PDI is observed in aqueous media and ultrafast pump-probe studies in water or dioxane-water solutions show that electron transfer occurs from the phenylene-fluorene units to the PDI. The extent of electron transfer increases with aggregation, suggesting it is largely an interchain process. The interaction of the negatively charged PBS-PFP-PDI copolymer with the positively charged surfactant hexadecyltrimethylammonium bromide (CTAB) in solution has also been studied. The copolymer PBS-PFP-PDI aggregates with the surfactant already at concentrations below the critical micelle concentration (cmc) and the nonpolar environment allows intermolecular energy transfer, observed by the weak emission band located at 630 nm that is associated with the emission of the PDI chromophore. However, the fact that the PDI photoluminescence (PL) lifetime (~1.4 ns) obtained in the presence of CTAB is considerably shorter than that of the nonaggregated chromophore (~5.4 ns) suggests that even in this case there is considerable PL quenching, possibly through some charge transfer route. The increase of the PBS-PFP-PDI photoluminescence intensity at surfactant concentrations above the cmc indicates deaggregation of polyelectrolyte within the initially formed polyelectrolyte-surfactant aggregates.


Assuntos
Ânions/química , Corantes/química , Fluorenos/química , Imidas/química , Perileno/análogos & derivados , Polímeros/química , Alcanossulfonatos/síntese química , Alcanossulfonatos/química , Ânions/síntese química , Cetrimônio , Compostos de Cetrimônio/química , Corantes/síntese química , Transporte de Elétrons , Fluorenos/síntese química , Imidas/síntese química , Modelos Moleculares , Perileno/síntese química , Perileno/química , Polímeros/síntese química , Solubilidade , Espectrometria de Fluorescência , Espectrofotometria , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...