Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr HIV Res ; 7(3): 327-35, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19442130

RESUMO

We recently described that the chloroxoquinolinic ribonucleoside 6-chloro-1,4-dihydro-4-oxo-1-(beta-D-ribofuranosyl) quinoline-3-carboxylic acid (compound A) inhibits the human immunodeficiency virus type 1 (HIV-1) enzyme reverse transcriptase (RT), and its replication in primary cells. Based on these findings, we performed kinetic studies to investigate the mode of inhibition of compound A and its aglycan analog (compound B). We found that both molecules inhibited RT activity independently of the template/primer used. Nevertheless, compound A was 10-fold more potent than compound B. Compound A inhibited the RNA-dependent DNA polymerase (RDDP) activity of RT with an uncompetitive and a noncompetitive mode of action with respect to dTTP incorporation and to template/primer (TP) uptake, respectively. The kinetic pattern of the inhibition displayed by compound A was probably due to its greater affinity for the ternary complex (RT-TP-dNTP) than the enzyme alone or the binary complex (RT-TP). Besides, by means of molecular modeling, we show that compound A bound on the NNRTI binding pocket of RT. However, our molecule targets such a site by making novel interactions with the enzyme RT, when compared to NNRTIs. These include a hydrogen bridge between the 2'-OH of our compound and the Tyr675 of the enzyme RT's chain B. Therefore, compound A is able to synergize with both a NRTI (AZT-TP) and a NNRTI (efavirenz). Taken together, our results suggest that compound A displays a novel mechanism of action, which may be different from classical NRTIs and NNRTIs.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Quinolinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonucleosídeos/farmacologia , Sítios de Ligação , Simulação por Computador , Humanos , Cinética , Modelos Moleculares , Ligação Proteica
2.
Curr HIV Res ; 6(3): 209-17, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18473784

RESUMO

We describe in this paper that the chloroxoquinolinic ribonucleoside 6-chloro-1,4-dihydro-4-oxo-1-(beta-D-ribofuranosyl)-quinoline-3-carboxylic acid (compound A) inhibits the HIV-1 replication in human primary cells. We initially observed that compound A inhibited HIV-1 infection in peripheral blood mononuclear cells (PBMCs) in a dose-dependent manner, resulting in an EC(50) of 1.5 +/- 0.5 microM and in a selective index of 1134. Likewise, compound A blocked HIV-1(BA-L) replication in macrophages in a dose-dependent manner, with an EC(50) equal to 4.98 +/- 0.9 microM. The replication of HIV-1 isolates from subtypes C and F was also inhibited by compound A with the same efficiency. Compound A inhibited an early event of the HIV-1 replicative cycle, since it prevented viral DNA synthesis in PBMCs exposed to HIV-1. Kinetic assays demonstrated that compound A inhibits the HIV-1 enzyme reverse transcriptase (RT) in dose-dependent manner, with a K(I) equal to 0.5 +/- 0.04 microM. Using a panel of HIV-1 isolates harboring NNRTI resistance mutations, we found a low degree of cross-resistance between compound A and clinical available NNRTIs. In addition, compound A exhibited additive effects with the RT inhibitors AZT and nevirapine, and synergized with the protease inhibitor atazanavir. Our results encourage continuous studies about the kinetic impact of compound A towards different catalytic forms of RT enzyme, and suggest that our nucleoside represents a promising molecule for future antiretroviral drug design.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Quinolinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonucleosídeos/farmacologia , Replicação Viral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Infecções por HIV/virologia , HIV-1/enzimologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Macrófagos/virologia
3.
Antiviral Res ; 77(1): 20-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17931712

RESUMO

We describe in this paper that the synthetic chloroxoquinolinic ribonucleoside 6-chloro-1,4-dihydro-4-oxo-1-(beta-D-ribofuranosyl) quinoline-3-carboxylic acid (compound A) and its free aglycogene base (compound B) inhibit, with low cytotoxicity, the replication of herpes simplex virus type 1 and 2 (HSV-1 and HSV-2). Compound A inhibited HSV-1 replication in Vero cells with an EC(50) of 1.3 and 1.4 microM for an acyclovir (ACV)-sensitive strain and an ACV-resistant strain of this virus, respectively. Additionally, it inhibited HSV-2 replication with an EC(50) of 1.1 microM. Compound B also inhibited the ACV-sensitive and -resistant HSV-1 strains, and HSV-2 at EC(50) values of 1.7, 1.9 and 1.6 microM, respectively. Time-of-addition assays, performed with compound A, suggested that this molecule at an early time point of the HSV replication cycle. Kinetic assays demonstrated that compounds A and B inhibit the HSV DNA polymerase activity in a noncompetitive fashion, with a K(i) equal to 0.1 and 0.2 microM, respectively. Taken together, our results suggest that compounds A and B represent promising lead molecules for further anti-HSV drug design.


Assuntos
Aciclovir/farmacologia , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico , Quinolinas/farmacologia , Ribonucleosídeos/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/fisiologia , Quinolinas/química , Ribonucleosídeos/química , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...