Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Heart Assoc ; 13(9): e034516, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700025

RESUMO

BACKGROUND: Extracorporeal cardiopulmonary resuscitation improves outcomes after out-of-hospital cardiac arrest. However, bleeding and thrombosis are common complications. We aimed to describe the incidence and predictors of bleeding and thrombosis and their association with in-hospital mortality. METHODS AND RESULTS: Consecutive patients presenting with refractory ventricular tachycardia/ventricular fibrillation out-of-hospital cardiac arrest between December 2015 and March 2022 who met the criteria for extracorporeal cardiopulmonary resuscitation initiation at our center were included. Major bleeding was defined by the Extracorporeal Life Support Organization's criteria. Adjusted analyses were done to seek out risk factors for bleeding and thrombosis and evaluate their association with mortality. Major bleeding occurred in 135 of 200 patients (67.5%), with traumatic bleeding from cardiopulmonary resuscitation in 73 (36.5%). Baseline demographics and arrest characteristics were similar between groups. In multivariable analysis, decreasing levels of fibrinogen were independently associated with bleeding (adjusted hazard ratio [aHR], 0.98 per every 10 mg/dL rise [95% CI, 0.96-0.99]). Patients who died had a higher rate of bleeds per day (0.21 versus 0.03, P<0.001) though bleeding was not significantly associated with in-hospital death (aHR, 0.81 [95% CI. 0.55-1.19]). A thrombotic event occurred in 23.5% (47/200) of patients. Venous thromboembolism occurred in 11% (22/200) and arterial thrombi in 15.5% (31/200). Clinical characteristics were comparable between groups. In adjusted analyses, no risk factors for thrombosis were identified. Thrombosis was not associated with in-hospital death (aHR, 0.65 [95% CI, 0.42-1.03]). CONCLUSIONS: Bleeding is a frequent complication of extracorporeal cardiopulmonary resuscitation that is associated with decreased fibrinogen levels on admission whereas thrombosis is less common. Neither bleeding nor thrombosis was significantly associated with in-hospital mortality.


Assuntos
Reanimação Cardiopulmonar , Oxigenação por Membrana Extracorpórea , Hemorragia , Mortalidade Hospitalar , Parada Cardíaca Extra-Hospitalar , Taquicardia Ventricular , Trombose , Fibrilação Ventricular , Humanos , Masculino , Feminino , Parada Cardíaca Extra-Hospitalar/terapia , Parada Cardíaca Extra-Hospitalar/mortalidade , Pessoa de Meia-Idade , Trombose/etiologia , Trombose/epidemiologia , Trombose/mortalidade , Taquicardia Ventricular/terapia , Taquicardia Ventricular/epidemiologia , Taquicardia Ventricular/mortalidade , Taquicardia Ventricular/etiologia , Reanimação Cardiopulmonar/efeitos adversos , Reanimação Cardiopulmonar/métodos , Fibrilação Ventricular/mortalidade , Fibrilação Ventricular/terapia , Fibrilação Ventricular/epidemiologia , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/métodos , Fatores de Risco , Incidência , Estudos Retrospectivos , Idoso , Hemorragia/mortalidade , Hemorragia/etiologia , Hemorragia/epidemiologia , Resultado do Tratamento
2.
Resusc Plus ; 18: 100619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590445

RESUMO

Introduction: Epinephrine has been the main drug recommended for decades during cardiopulmonary resuscitation (CPR). But epinephrine's ß-adrenergic effects might increase myocardial oxygen consumption and may cause arrythmias after ROSC. Norepinephrine has a weaker ß-adrenergic effect and could be useful during CPR. Studies on norepinephrine's effect on hemodynamic parameters and cerebral perfusion are scarce. This study aimed to assess norepinephrine's hemodynamic impact in an experimental model of cardiac arrest. Methods: After an initial dose study to determine the optimal dose, we conducted a prospective randomized study with 19 pigs. After 3 minutes of untreated ventricular fibrillation, animals received boluses of 0.5 mg Epinephrine (EPI) or 1 mg Norepinephrine (NE) every 5 minutes during CPR. Coronary perfusion pressure (CPP), carotid blood flow (CBF) and cerebral perfusion pressure (CePP) were evaluated. Results: At baseline, hemodynamic parameters did not differ between the two groups. During CPR, CPP and CBF were similar: 17.3 (12.8; 31.8) in the EPI group vs 16.0 (11.1; 37.7) in the NE group, p = 0.9 and 28.4 (22.0; 54.8) vs 30.8 (12.2; 56.3) respectively, p = 0.9. CePP was not significantly lower during resuscitation in the NE group compared to the EPI group: 12.2 (-8.2; 42.2) vs 7.8 (-2.0; 32.0) p = 0.4. Survival rate was low with only one animal in the EPI group and 2 in the NE group. Conclusion: Cerebral perfusion pressure, coronary perfusion pressure and carotid blood flow during CPR did not significantly differ between the norepinephrine group and the epinephrine group. Further investigations should evaluate different options such as a continuous NE infusion.

4.
Resusc Plus ; 15: 100437, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37576444

RESUMO

There are 350,000 out-of-hospital cardiac arrest (OHCA) cases annually in the United States of America. Using automated external defibrillators (AEDs) has increased survival in cardiac arrests (CA) with an initial shockable rhythm. Thus, guidelines recommend complete geographical coverage with AEDs. To fill in the gaps in Minnesota, the Center for Resuscitation Medicine at the University of Minnesota raised an $18.8 million grant from the Helmsley Charitable Trust to supply law enforcement first responders with AEDs and, thus, increase survival rates after OHCA by reducing the time to first shock. This report elaborates on the decision-making, fundraising, and logistic strategy required to reach statewide AED coverage. Methods: The baseline need for AEDs was analyzed using a questionnaire sent out to state law enforcement agencies, state patrols, city and county agencies, and tribal agencies in 2021. Furthermore, OHCA cases of 2021 were reviewed. The combination of this information led to an action plan to equip and train all agencies throughout the state's eight regions with AEDs. Results: The electronic survey was initially sent out to 358 agencies. The initial response rate was 77% (n = 276). This resulted in a total need of 8300 AEDs to be deployed over three years (2022-2025). As of 2023, over 4769 AEDs have been distributed, covering 237 sites. Conclusion: By equipping first responders with AED systems, the Center for Resuscitation Medicine aims to shorten the gap in statewide AED coverage, thus increasing the chances of survival after OHCA.

5.
Pediatr Crit Care Med ; 24(11): e531-e539, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439601

RESUMO

OBJECTIVES: During pediatric cardiac arrest, contemporary guidelines recommend dosing epinephrine at regular intervals, including in patients requiring extracorporeal membrane oxygenation (ECMO). The impact of epinephrine-induced vasoconstriction on systemic afterload and venoarterial ECMO support is not well-defined. DESIGN: Nested retrospective observational study within a single center. The primary exposure was time from last dose of epinephrine to initiation of ECMO flow; secondary exposures included cumulative epinephrine dose and arrest time. Systemic afterload was assessed by mean arterial pressure and use of systemic vasodilator therapy; ECMO pump flow and Vasoactive-Inotrope Score (VIS) were used as measures of ECMO support. Clearance of lactate was followed post-cannulation as a marker of systemic perfusion. SETTING: PICU and cardiac ICU in a quaternary-care center. PATIENTS: Patients 0-18 years old who required ECMO cannulation during resuscitation over the 6 years, 2014-2020. Patients were excluded if ECMO was initiated before cardiac arrest or if the resuscitation record was incomplete. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 92 events in 87 patients, with 69 events having complete data for analysis. The median (interquartile range) of total epinephrine dosing was 65 mcg/kg (37-101 mcg/kg), with the last dose given 6 minutes (2-16 min) before the initiation of ECMO flows. Shorter interval between last epinephrine dose and ECMO initiation was associated with increased use of vasodilators within 6 hours of ECMO ( p = 0.05), but not with mean arterial pressure after 1 hour of support (estimate, -0.34; p = 0.06). No other associations were identified between epinephrine delivery and mean arterial blood pressure, vasodilator use, pump speed, VIS, or lactate clearance. CONCLUSIONS: There is limited evidence to support the idea that regular dosing of epinephrine during cardiac arrest is associated with increased in afterload after ECMO cannulation. Additional studies are needed to validate findings against ECMO flows and clinically relevant outcomes.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Humanos , Criança , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Estudos Retrospectivos , Epinefrina , Parada Cardíaca/terapia , Vasodilatadores , Ácido Láctico , Resultado do Tratamento
6.
Resuscitation ; 182: 109651, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442595

RESUMO

AIM: Describe the lung injury patterns among patients presenting with refractory ventricular tachycardia/ventricular fibrillation out-of-hospital cardiac arrest (VT/VF OHCA) supported with veno-arterial extracorporeal membrane oxygenation (VA-ECMO) facilitated resuscitation. METHODS: In this retrospective single-center cohort study including VT/VF OHCA patients supported with VA ECMO, we compared OHCA characteristics, post-arrest computed tomography (CT) scans, ventilator parameters, and other lung-related pathology between survivors, patients who developed brain death, and those with other causes of death. RESULTS: Among 138 patients, 48/138 (34.8%) survived, 31/138 (22.4%) developed brain death, and 59/138 (42.7%) died of other causes. Successful extubation was achieved in 39/138 (28%) with a median time to extubation of 8.0 days (6.0, 11.0) in those who survived. Tracheostomy was required in 15/48 (31.3%) survivors. Chest CT obtained on all patients showed lung injury in at least one lung area in 124/135 (91.8%) patients, predominantly in the dependent posterior areas. There was no association between the number of affected areas and survival. Lung compliance was low on admission [26 (19,33) ml/cmH20], improved throughout hospitalization (p = 0.03), and recovered faster in survivors compared to those who died (p < 0.001). VA-ECMO allowed the use of lung-protective ventilation while maintaining normalized PaO2 and PaCO2. Patients treated with V-A ECMO and either IABP or Impella had lower pulmonary compliance and more affected areas on their CT compared to those treated with V-A ECMO alone. CONCLUSIONS: Lung injury is common among patients with refractory VT/VF OHCA requiring V-A ECMO, but imaging severity is not associated with survival. Reductions in lung compliance accompany post-arrest lung injury while compliance recovery is associated with survival.


Assuntos
Lesão Pulmonar Aguda , Reanimação Cardiopulmonar , Oxigenação por Membrana Extracorpórea , Parada Cardíaca Extra-Hospitalar , Humanos , Fibrilação Ventricular/terapia , Oxigenação por Membrana Extracorpórea/métodos , Estudos de Coortes , Estudos Retrospectivos , Morte Encefálica , Reanimação Cardiopulmonar/métodos , Lesão Pulmonar Aguda/complicações
7.
Crit Care Explor ; 3(6): e0443, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34151279

RESUMO

To characterize prearrest hemodynamic trajectories of children suffering inhospital cardiac arrest. DESIGN: Exploratory retrospective analysis of arterial blood pressure and electrocardiogram waveforms. SETTING: PICU and cardiac critical care unit in a tertiary-care children's hospital. PATIENTS: Twenty-seven children with invasive blood pressure monitoring who suffered a total of 31 inhospital cardiac arrest events between June 2017 and June 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We assessed changes in cardiac output, systemic vascular resistance, stroke volume, and heart rate derived from arterial blood pressure waveforms using three previously described estimation methods. We observed substantial prearrest drops in cardiac output (population median declines of 65-84% depending on estimation method) in all patients in the 10 minutes preceding inhospital cardiac arrest. Most patients' mean arterial blood pressure also decreased, but this was not universal. We identified three hemodynamic patterns preceding inhospital cardiac arrest: subacute pulseless arrest (n = 18), acute pulseless arrest (n = 7), and bradycardic arrest (n = 6). Acute pulseless arrest events decompensated within seconds, whereas bradycardic and subacute pulseless arrest events deteriorated over several minutes. In the subacute and acute pulseless arrest groups, decreases in cardiac output were primarily due to declines in stroke volume, whereas in the bradycardic group, the decreases were primarily due to declines in heart rate. CONCLUSIONS: Critically ill children exhibit distinct physiologic behaviors prior to inhospital cardiac arrest. All events showed substantial declines in cardiac output shortly before inhospital cardiac arrest. We describe three distinct prearrest patterns with varying rates of decline and varying contributions of heart rate and stroke volume changes to the fall in cardiac output. Our findings suggest that monitoring changes in arterial blood pressure waveform-derived heart rate, pulse pressure, cardiac output, and systemic vascular resistance estimates could improve early detection of inhospital cardiac arrest by up to several minutes. Further study is necessary to verify the patterns witnessed in our cohort as a step toward patient rather than provider-centered definitions of inhospital cardiac arrest.

8.
Resuscitation ; 162: 274-283, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33766668

RESUMO

AIM: Inhaled nitric oxide (iNO) during cardiopulmonary resuscitation (CPR) improved systemic hemodynamics and outcomes in a preclinical model of adult in-hospital cardiac arrest (IHCA) and may also have a neuroprotective role following cardiac arrest. The primary objectives of this study were to determine if iNO during CPR would improve cerebral hemodynamics and mitochondrial function in a pediatric model of lipopolysaccharide-induced shock-associated IHCA. METHODS: After lipopolysaccharide infusion and ventricular fibrillation induction, 20 1-month-old piglets received hemodynamic-directed CPR and were randomized to blinded treatment with or without iNO (80 ppm) during and after CPR. Defibrillation attempts began at 10 min with a 20-min maximum CPR duration. Cerebral tissue from animals surviving 1-h post-arrest underwent high-resolution respirometry to evaluate the mitochondrial electron transport system and immunohistochemical analyses to assess neuropathology. RESULTS: During CPR, the iNO group had higher mean aortic pressure (41.6 ±â€¯2.0 vs. 36.0 ±â€¯1.4 mmHg; p = 0.005); diastolic BP (32.4 ±â€¯2.4 vs. 27.1 ±â€¯1.7 mmHg; p = 0.03); cerebral perfusion pressure (25.0 ±â€¯2.6 vs. 19.1 ±â€¯1.8 mmHg; p = 0.02); and cerebral blood flow relative to baseline (rCBF: 243.2 ±â€¯54.1 vs. 115.5 ±â€¯37.2%; p = 0.02). Among the 8/10 survivors in each group, the iNO group had higher mitochondrial Complex I oxidative phosphorylation in the cerebral cortex (3.60 [3.56, 3.99] vs. 3.23 [2.44, 3.46] pmol O2/s mg; p = 0.01) and hippocampus (4.79 [4.35, 5.18] vs. 3.17 [2.75, 4.58] pmol O2/s mg; p = 0.02). There were no other differences in mitochondrial respiration or brain injury between groups. CONCLUSIONS: Treatment with iNO during CPR resulted in superior systemic hemodynamics, rCBF, and cerebral mitochondrial Complex I respiration in this pediatric cardiac arrest model.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Óxido Nítrico/administração & dosagem , Animais , Circulação Cerebrovascular , Criança , Modelos Animais de Doenças , Parada Cardíaca/terapia , Hemodinâmica , Humanos , Distribuição Aleatória , Suínos
9.
Sci Rep ; 11(1): 3828, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589662

RESUMO

Neurologic injury is a leading cause of morbidity and mortality following pediatric cardiac arrest. In this study, we assess the feasibility of quantitative, non-invasive, frequency-domain diffuse optical spectroscopy (FD-DOS) neuromonitoring during cardiopulmonary resuscitation (CPR), and its predictive utility for return of spontaneous circulation (ROSC) in an established pediatric swine model of cardiac arrest. Cerebral tissue optical properties, oxy- and deoxy-hemoglobin concentration ([HbO2], [Hb]), oxygen saturation (StO2) and total hemoglobin concentration (THC) were measured by a FD-DOS probe placed on the forehead in 1-month-old swine (8-11 kg; n = 52) during seven minutes of asphyxiation followed by twenty minutes of CPR. ROSC prediction and time-dependent performance of prediction throughout early CPR (< 10 min), were assessed by the weighted Youden index (Jw, w = 0.1) with tenfold cross-validation. FD-DOS CPR data was successfully acquired in 48/52 animals; 37/48 achieved ROSC. Changes in scattering coefficient (785 nm), [HbO2], StO2 and THC from baseline were significantly different in ROSC versus No-ROSC subjects (p < 0.01) after 10 min of CPR. Change in [HbO2] of + 1.3 µmol/L from 1-min of CPR achieved the highest weighted Youden index (0.96) for ROSC prediction. We demonstrate feasibility of quantitative, non-invasive FD-DOS neuromonitoring, and stable, specific, early ROSC prediction from the third minute of CPR.


Assuntos
Reanimação Cardiopulmonar/métodos , Parada Cardíaca/terapia , Retorno da Circulação Espontânea , Animais , Biomarcadores , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Tomada de Decisão Clínica , Gerenciamento Clínico , Modelos Animais de Doenças , Parada Cardíaca/etiologia , Hemodinâmica , Masculino , Análise Espectral/métodos , Suínos , Pesquisa Translacional Biomédica
10.
Neurobiol Dis ; 151: 105273, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482356

RESUMO

Pathological hyperphosphorylated tau is a key feature of Alzheimer's disease (AD) and Frontotemporal dementia (FTD). Using transgenic mice overexpressing human non-mutated tau (htau mice), we assessed the contribution of tau to peripheral and central neurodegeneration. Indices of peripheral small and large fiber neuropathy and learning and memory performances were assessed at 3 and 6 months of age. Overexpression of human tau is associated with peripheral neuropathy at 6 months of age. Our study also provides evidence that non-mutated tau hyperphosphorylation plays a critical role in memory deficits. In addition, htau mice had reduced stromal corneal nerve length with preservation of sub-basal corneal nerves, consistent with a somatofugal degeneration. Corneal nerve degeneration occurred prior to any cognitive deficits and peripheral neuropathy. Stromal corneal nerve loss was observed in patients with FTD but not AD. Corneal confocal microscopy may be used to identify early neurodegeneration and differentiate FTD from AD.


Assuntos
Córnea/diagnóstico por imagem , Córnea/patologia , Tauopatias/diagnóstico por imagem , Tauopatias/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Animais , Feminino , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Humanos , Transtornos da Memória/etiologia , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Pessoa de Meia-Idade , Degeneração Neural/diagnóstico por imagem , Degeneração Neural/patologia , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Doenças do Sistema Nervoso Periférico/patologia
11.
Respir Care ; 66(3): 366-377, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32817445

RESUMO

BACKGROUND: During the COVID-19 pandemic, a need for innovative, inexpensive, and simple ventilator devices for mass use has emerged. The Oxylator (CPR Medical Devices, Markham, Ontario, Canada) is an FDA-approved, fist-size, portable ventilation device developed for out-of-hospital emergency ventilation. It has not been tested in conditions of severe lung injury or with added PEEP. We aimed to assess the performance and reliability of the device in simulated and experimental conditions of severe lung injury, and to derive monitoring methods to allow the delivery of safe, individualized ventilation during situations of surge. METHODS: We bench-tested the functioning of the device with an added PEEP valve extensively, mimicking adult patients with various respiratory mechanics during controlled ventilation, spontaneous breathing, and prolonged unstable conditions where mechanics or breathing effort was changed at every breath. The device was further tested on a porcine model (4 animals) after inducing lung injury, and these results were compared with conventional ventilation modes. RESULTS: The device was stable and predictable, delivering a constant flow (30 L/min) and cycling automatically at the inspiratory pressure set (minimum of 20 cm H2O) above auto-PEEP. Changes in respiratory mechanics manifested as changes in respiratory timing, allowing prediction of tidal volumes from breathing frequency. Simulating lung injury resulted in relatively low tidal volumes (330 mL with compliance of 20 mL/cm H2O). In the porcine model, arterial oxygenation, CO2, and pH were comparable to conventional modes of ventilation. CONCLUSIONS: The Oxylator is a simple device that delivered stable ventilation with tidal volumes within a clinically acceptable range in bench and porcine lung models with low compliance. External monitoring of respiratory timing is advisable, allowing tidal volume estimation and recognition of changes in respiratory mechanics. The device can be an efficient, low-cost, and practical rescue solution for providing short-term ventilatory support as a temporary bridge, but it requires a caregiver at the bedside.


Assuntos
Insuficiência Respiratória , Ventiladores Mecânicos , Benchmarking , COVID-19 , Desenho de Equipamento , Humanos , Insuficiência Respiratória/terapia , Mecânica Respiratória , Volume de Ventilação Pulmonar , Resultado do Tratamento
12.
Crit Care ; 24(1): 583, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993753

RESUMO

BACKGROUND: Despite controversies, epinephrine remains a mainstay of cardiopulmonary resuscitation (CPR). Recent animal studies have suggested that epinephrine may decrease cerebral blood flow (CBF) and cerebral oxygenation, possibly potentiating neurological injury during CPR. We investigated the cerebrovascular effects of intravenous epinephrine in a swine model of pediatric in-hospital cardiac arrest. The primary objectives of this study were to determine if (1) epinephrine doses have a significant acute effect on CBF and cerebral tissue oxygenation during CPR and (2) if the effect of each subsequent dose of epinephrine differs significantly from that of the first. METHODS: One-month-old piglets (n = 20) underwent asphyxia for 7 min, ventricular fibrillation, and CPR for 10-20 min. Epinephrine (20 mcg/kg) was administered at 2, 6, 10, 14, and 18 min of CPR. Invasive (laser Doppler, brain tissue oxygen tension [PbtO2]) and noninvasive (diffuse correlation spectroscopy and diffuse optical spectroscopy) measurements of CBF and cerebral tissue oxygenation were simultaneously recorded. Effects of subsequent epinephrine doses were compared to the first. RESULTS: With the first epinephrine dose during CPR, CBF and cerebral tissue oxygenation increased by > 10%, as measured by each of the invasive and noninvasive measures (p < 0.001). The effects of epinephrine on CBF and cerebral tissue oxygenation decreased with subsequent doses. By the fifth dose of epinephrine, there were no demonstrable increases in CBF of cerebral tissue oxygenation. Invasive and noninvasive CBF measurements were highly correlated during asphyxia (slope effect 1.3, p < 0.001) and CPR (slope effect 0.20, p < 0.001). CONCLUSIONS: This model suggests that epinephrine increases CBF and cerebral tissue oxygenation, but that effects wane following the third dose. Noninvasive measurements of neurological health parameters hold promise for developing and directing resuscitation strategies.


Assuntos
Reanimação Cardiopulmonar/métodos , Transtornos Cerebrovasculares/tratamento farmacológico , Epinefrina/farmacologia , Hemodinâmica/efeitos dos fármacos , Animais , Gasometria/métodos , Pressão Sanguínea/efeitos dos fármacos , Reanimação Cardiopulmonar/instrumentação , Reanimação Cardiopulmonar/normas , Transtornos Cerebrovasculares/fisiopatologia , Modelos Animais de Doenças , Epinefrina/uso terapêutico , Hemodinâmica/fisiologia , Suínos
13.
J Am Heart Assoc ; 9(9): e015032, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32321350

RESUMO

Background Hyperoxia during cardiopulmonary resuscitation (CPR) may lead to oxidative injury from mitochondrial-derived reactive oxygen species, despite guidelines recommending 1.0 inspired oxygen during CPR. We hypothesized exposure to 1.0 inspired oxygen during CPR would result in cerebral hyperoxia, higher mitochondrial-derived reactive oxygen species, increased oxidative injury, and similar survival compared with those exposed to 21% oxygen. Methods and Results Four-week-old piglets (n=25) underwent asphyxial cardiac arrest followed by randomization and blinding to CPR with 0.21 (n=10) or 1.0 inspired oxygen (n=10) through 10 minutes post return of spontaneous circulation. Sham was n=5. Survivors received 4 hours of protocolized postarrest care, whereupon brain was obtained for mitochondrial analysis and neuropathology. Groups were compared using Kruskal-Wallis test, Wilcoxon rank-sum test, and generalized estimating equations regression models. Both 1.0 and 0.21 groups were similar in systemic hemodynamics and cerebral blood flow, as well as survival (8/10). The 1.0 animals had relative cerebral hyperoxia during CPR and immediately following return of spontaneous circulation (brain tissue oxygen tension, 85% [interquartile range, 72%-120%] baseline in 0.21 animals versus 697% [interquartile range, 515%-721%] baseline in 1.0 animals; P=0.001 at 10 minutes postarrest). Cerebral mitochondrial reactive oxygen species production was higher in animals treated with 1.0 compared with 0.21 (P<0.03). Exposure to 1.0 oxygen led to increased cerebral oxidative injury to proteins and lipids, as evidenced by significantly higher protein carbonyls and 4-hydroxynoneals compared with 0.21 (P<0.05) and sham (P<0.001). Conclusions Exposure to 1.0 inspired oxygen during CPR caused cerebral hyperoxia during resuscitation, and resultant increased mitochondrial-derived reactive oxygen species and oxidative injury following cardiac arrest.


Assuntos
Encéfalo/metabolismo , Reanimação Cardiopulmonar/efeitos adversos , Parada Cardíaca/terapia , Hiperóxia/complicações , Estresse Oxidativo , Oxigênio/toxicidade , Síndrome Pós-Parada Cardíaca/etiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Asfixia/complicações , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Parada Cardíaca/etiologia , Parada Cardíaca/fisiopatologia , Peroxidação de Lipídeos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Síndrome Pós-Parada Cardíaca/metabolismo , Síndrome Pós-Parada Cardíaca/patologia , Carbonilação Proteica , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Sus scrofa
14.
Resusc Plus ; 4: 100050, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34223324

RESUMO

AIM: Compare vasopressin to a second dose of epinephrine as rescue therapy after ineffective initial doses of epinephrine in diverse models of pediatric in-hospital cardiac arrest. METHODS: 67 one- to three-month old female swine (10-30 kg) in six experimental cohorts from one laboratory received hemodynamic-directed CPR, a resuscitation method where high quality chest compressions are provided and vasopressor administration is titrated to coronary perfusion pressure (CoPP) ≥20 mmHg. Vasopressors are given when CoPP is <20 mmHg, in sequences of two doses of 0.02 mg/kg epinephrine separated by minimum one-minute, then a rescue dose of 0.4 U/kg vasopressin followed by minimum two-minutes. Invasive measurements were used to evaluate and compare the hemodynamic and neurologic effects of each vasopressor dose. RESULTS: Increases in CoPP and cerebral blood flow (CBF) were greater with vasopressin rescue than epinephrine rescue (CoPP: +8.16 [4.35, 12.06] mmHg vs. + 5.43 [1.56, 9.82] mmHg, p = 0.02; CBF: +14.58 [-0.05, 38.12] vs. + 0.00 [-0.77, 18.24] perfusion units (PFU), p = 0.005). Twenty animals (30%) failed to achieve CoPP ≥20 mmHg after two doses of epinephrine; 9/20 (45%) non-responders achieved CoPP ≥20 mmHg after vasopressin. Among all animals, the increase in CBF was greater with vasopressin (+14.58 [-0.58, 38.12] vs. 0.00 [-0.77, 18.24] PFU, p = 0.005). CONCLUSIONS: CoPP and CBF rose significantly more after rescue vasopressin than after rescue epinephrine. Importantly, CBF increased after vasopressin rescue, but not after epinephrine rescue. In the 30% that failed to meet CoPP of 20 mmHg after two doses of epinephrine, 45% achieved target CoPP with a single rescue vasopressin dose.

15.
Diabetes ; 68(11): 2143-2154, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31492662

RESUMO

While peripheral neuropathy is the most common complication of long-term diabetes, cognitive deficits associated with encephalopathy and myelopathy also occur. Diabetes is a risk factor for Alzheimer disease (AD) and increases the risk of progression from mild cognitive impairment to AD. The only current recommendation for preventing or slowing the progression of peripheral neuropathy is to maintain close glycemic control, while there is no recommendation for central nervous system disorders. NSI-189 is a new chemical entity that when orally administered promotes neurogenesis in the adult hippocampus, increases hippocampal volume, enhances synaptic plasticity, and reduces cognitive dysfunction. To establish the potential for impact on peripheral neuropathy, we first showed that NSI-189 enhances neurite outgrowth and mitochondrial functions in cultured adult rat primary sensory neurons. Oral delivery of NSI-189 to murine models of type 1 (female) and type 2 (male) diabetes prevented multiple functional and structural indices of small and large fiber peripheral neuropathy, increased hippocampal neurogenesis, synaptic markers and volume, and protected long-term memory. NSI-189 also halted progression of established peripheral and central neuropathy. NSI-189, which is currently in clinical trials for treatment of major depressive disorder, offers the opportunity for the development of a single therapeutic agent against multiple indices of central and peripheral neuropathy.


Assuntos
Aminopiridinas/uso terapêutico , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Neuropatias Diabéticas/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Piperazinas/uso terapêutico , Células Receptoras Sensoriais/efeitos dos fármacos , Aminopiridinas/farmacologia , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/fisiopatologia , Feminino , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Piperazinas/farmacologia , Ratos , Sinapses/efeitos dos fármacos
16.
Resuscitation ; 139: 1-8, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30946924

RESUMO

AIM: Animal studies have established deleterious hemodynamic effects of interrupting chest compressions. The objective of this study was to evaluate the effect of interruptions on invasively measured blood pressures (BPs) during pediatric in-hospital cardiac arrest (IHCA). METHODS: This was a single-center, observational study of pediatric (<18 years) intensive care unit IHCAs in patients with invasive arterial catheters in place. Interruptions were defined as ≥1 s between chest compressions. Diastolic BP (DBP) and systolic BP (SBP) were determined for individual compressions. For the primary analysis, the average DBP and SBP of the 20 compressions preceding each interruption were compared to the average DBP and SBP of the first 20 compressions following each interruption utilizing non-parametric paired analyses. Linear regression evaluated the change in DBP during interruptions and following interruptions. RESULTS: Thirty-two IHCA events met inclusion criteria, yielding 161 evaluable interruptions. The median age was 2.1 years. Return of circulation was achieved in 24 (75%). The median interruption duration was 2.4 [1.4, 7.0] seconds. Most patients were intubated pre-arrest and received epinephrine during CPR. BPs were not different pre- vs. post-interruption (DBP: 28.7 [21.6, 38.2] vs. 28.3 [21.0, 37.4] mmHg, p = 0.81; SBP: 82.0 [51.7, 116.7] vs. 85.4 [55.7, 122.2] mmHg, p = 0.07). DBP decreased 8.41 ± 0.73 mmHg (p < 0.001) during the first second of interruptions and 0.19 ± 0.02 mmHg/s (p < 0.001) in subsequent seconds. CONCLUSIONS: BPs following chest compression interruptions did not differ from pre-interruption BPs. These findings suggest that in the setting of high-quality in-hospital CPR, brief chest compression interruptions do not have persistent detrimental hemodynamic impact.


Assuntos
Reanimação Cardiopulmonar/normas , Parada Cardíaca/terapia , Massagem Cardíaca/métodos , Pressão Sanguínea , Reanimação Cardiopulmonar/mortalidade , Criança , Pré-Escolar , Feminino , Parada Cardíaca/mortalidade , Hemodinâmica , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Masculino , Estudos Prospectivos
17.
Curr Opin Crit Care ; 24(3): 143-150, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29629927

RESUMO

PURPOSE OF REVIEW: We review the recent advances in physiologic monitoring during cardiac arrest and offer an evidence-based framework for prioritizing physiologic targets during cardiopulmonary resuscitation (CPR). RECENT FINDINGS: Current CPR guidelines recommend a uniform approach for all patients in cardiac arrest, but newer data support a precision strategy that uses the individual patient's physiology to guide resuscitation. Coronary perfusion pressure and arterial DBP are associated with survival outcomes in recent animal and human studies. End-tidal carbon dioxide is a reasonable noninvasive alternative, but may be inferior to invasive hemodynamic endpoints. Cerebral oximetry and cardiac ultrasound are emerging physiologic indicators of CPR effectiveness. SUMMARY: Physiologic monitoring can and should be used to deliver precision CPR whenever possible and may improve outcomes after cardiac arrest.


Assuntos
Reanimação Cardiopulmonar/normas , Parada Cardíaca/fisiopatologia , Parada Cardíaca/terapia , Hemodinâmica/fisiologia , Monitorização Fisiológica/normas , Guias de Prática Clínica como Assunto , Medicina de Precisão/normas , Adulto , Idoso , Idoso de 80 Anos ou mais , Reanimação Cardiopulmonar/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/métodos , Medicina de Precisão/métodos
18.
Neuropharmacology ; 129: 26-35, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29122628

RESUMO

Neuropathy is a common complication of long-term diabetes. Proposed mechanisms of neuronal damage caused by diabetes that are downstream of hyperglycemia and/or loss of insulin signaling include ischemic hypoxia, inflammation and loss of neurotrophic support. The curcumin derivative J147 is a potent neurogenic and neuroprotective drug candidate initially developed for the treatment of neurodegenerative conditions associated with aging that impacts many pathways implicated in the pathogenesis of diabetic neuropathy. Here, we demonstrate efficacy of J147 in ameliorating multiple indices of neuropathy in the streptozotocin-induced mouse model of type 1 diabetes. Diabetes was determined by blood glucose, HbA1c, and insulin levels and efficacy of J147 by behavioral, physiologic, biochemical, proteomic, and transcriptomic assays. Biological efficacy of systemic J147 treatment was confirmed by its capacity to decrease TNFα pathway activation and several other markers of neuroinflammation in the CNS. Chronic oral treatment with J147 protected the sciatic nerve from progressive diabetes-induced slowing of large myelinated fiber conduction velocity while single doses of J147 rapidly and transiently reversed established touch-evoked allodynia. Conduction slowing and allodynia are clinically relevant markers of early diabetic neuropathy and neuropathic pain, respectively. RNA expression profiling suggests that one of the pathways by which J147 imparts its protection against diabetic induced neuropathy may be through activation of the AMP kinase pathway. The diverse biological and therapeutic effects of J147 suggest it as an alternative to the polypharmaceutical approaches required to treat the multiple pathogenic mechanisms that contribute to diabetic neuropathy.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Curcumina/uso terapêutico , Neuropatias Diabéticas/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Animais , Proteína C-Reativa/metabolismo , Curcumina/química , Neuropatias Diabéticas/induzido quimicamente , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/genética , Limiar da Dor/efeitos dos fármacos , Estimulação Física , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Neuroscience ; 354: 136-145, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28476321

RESUMO

Diabetes mellitus represents a group of metabolic diseases that are characterized by hyperglycemia caused by either lack of insulin production or a reduced ability to respond to insulin. It is estimated that there were 347 million people worldwide who suffered from diabetes in 2008 and incidence is predicted to double by 2050. Neuropathy is the most common complication of long-term diabetes and approximately 30% of these subjects develop chronic neuropathic pain. A distinct acute, severe form of neuropathic pain, called insulin neuritis or treatment-induced painful neuropathy of diabetes (TIND), may also occur shortly after initiation of intensive glycemic control, with an incidence rate of up to 10.9%. The pathological mechanisms leading to TIND, which is mostly unresponsive to analgesics, are not yet understood, impeding the development of therapies. Studies to date have been clinical and with limited cohorts of patients. In the current study, we developed chronic and acute insulin-induced neuropathic pain in mice with type 2 insulin-resistant diabetes. Furthermore, we determined that insulin-induced acute allodynia is independent of glycemia levels, can also be induced with Insulin-like Growth Factor 1 (IGF1) and be prevented by inhibition of AKT, providing evidence of an insulin/IGF1 signaling pathway-based mechanism for TIND. This mouse model is useful for the elucidation of mechanisms contributing to TIND and for the testing of new therapeutic approaches to treat TIND.


Assuntos
Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/terapia , Modelos Animais de Doenças , Hipoglicemiantes/toxicidade , Insulina/toxicidade , Neuralgia/complicações , Neuralgia/terapia , Aminas/uso terapêutico , Animais , Ácidos Cicloexanocarboxílicos/uso terapêutico , Neuropatias Diabéticas/genética , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Feminino , Proteínas Ativadoras de GTPase , Gabapentina , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hiperalgesia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Condução Nervosa/genética , Condução Nervosa/fisiologia , Neuralgia/genética , Limiar da Dor/fisiologia , Tempo de Reação/fisiologia , Receptor de Insulina/deficiência , Receptor de Insulina/genética , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Ácido gama-Aminobutírico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...