Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Asian Pac J Cancer Prev ; 21(8): 2453-2461, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32856878

RESUMO

The chemotherapy drug doxorubicin (DOX) is effective in treating many types of cancers. However, due to its pro-inflammatory and cardiotoxic side effects, other remedies have also been explored as alternative treatments. The plant Alangium longiflorum was reported to contain cytotoxic activity against cancer cells, but it is unclear whether this plant would also yield side effects similar to doxorubicin. Hence,  this study investigated cytotoxic activity of A. longiflorum leaf extract against lung cancer cells and compared its pro-inflammatory and cardiotoxic side effects with those of DOX. METHODS: Cytotoxic activity of A. longiflorum in human lung (A549) and breast (MCF-7) cancer cells was initially assessed by MTT assay and then was compared with doxorubicin. Presence of secondary metabolites in the leaf extract was examined by phytochemical screening. The ability of the plant extract to induce apoptosis was determined by measuring caspase-3/7 activity and apoptosis-related gene expression. Pro-inflammatory response was assessed by quantifying NFκB transcriptional activity and nuclear translocation with dual luciferase reporter and immunofluorescence assays, respectively. Cardiotoxicity was measured using zebrafish as a model organism. RESULTS: A. longiflorum leaf extract displayed high cytotoxic activity against A549 versus MCF-7, which led this study to focus further on A549. Phytochemical screening showed that the extract contained terpenoids, alkaloids, phenols, cardiac glycosides, and tannins. The extract induced apoptosis through activation of caspase-3/7 and upregulation of pro-apoptotic genes without causing NFκB transcriptional activation and nuclear localization. The extract also did not significantly reduce heart function in zebrafish. CONCLUSION: Overall, our data suggested that extract from leaves of A. longiflorum can have the potential to serve as apoptotic agent towards lung cancer without inducing significant cardiotoxicity.


Assuntos
Alangiaceae/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Cardiotoxicidade/tratamento farmacológico , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Cardiotoxicidade/etiologia , Cardiotoxicidade/patologia , Proliferação de Células , Doxorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , NF-kappa B/genética , Folhas de Planta/química , Ativação Transcricional , Células Tumorais Cultivadas , Peixe-Zebra
2.
Am J Reprod Immunol ; 77(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28185345

RESUMO

Successful pregnancy is regulated by several soluble factors that are differentially expressed throughout gestation. These factors are important to initiate and establish embryo implantation and parturition. Senescent cells, which undergo permanent cell proliferation arrest in response to stress, also produce several secreted factors, referred to as the senescence-associated secretory phenotype (SASP). Here, we review some of the secreted factors found during early and late pregnancy and compare their expression profile with those of the SASP. Because senescent cells are found in the uterus and embryo during pregnancy, we hypothesize that SASP factors contribute to successful pregnancy. We discuss how senescent cells may support embryo development and signal parturition. We provide evidences for potential contribution of SASP to the physiology and pathophysiology of pregnancy.


Assuntos
Senescência Celular/fisiologia , Gravidez/fisiologia , Animais , Desenvolvimento Embrionário/fisiologia , Feminino , Humanos , Parto/metabolismo
3.
J AOAC Int ; 99(6): 1479-1489, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27653702

RESUMO

The Philippine government established the Traditional and Alternative Medicine Act in 1997 to promote traditionally used herbal products and to provide an effective yet affordable alternative to conventional medicines. However, government regulation of herbal medicinal products (HMPs) is not stringent, relying only on submitted quality data from the manufacturer. In this study we validated the taxonomic identity of 26 plant samples contained within 22 HMPs, each produced by different local manufacturers, through DNA barcoding of the nuclear internal transcribed spacer-2 (ITS2) region. We recovered 19 ITS2 barcodes from 26 samples. These were compared to sequences in GenBank using MEGABLAST, but ambiguous results (similar max scores for different species) were phylogenetically analyzed. Twelve of the 19 samples matched the indicated species on the product label, three were equivocal in specific identity but were placed in the expected genus, and four other samples from three manufacturers contained contamination and/or substitution. GenBank's reference database was at times problematic because some sequences were lacking or were misidentified, but the database was still useful. Overall, ITS2 barcoding was successful in authenticating the HMPs, and it is recommended during the premarket evaluation process so as to obtain a certificate of registration from the government. The government should also develop a comprehensive database of barcodes for Philippine plants, and should prioritize the development of the traditional pharmacopeia because many locally produced HMPs are not indigenous.


Assuntos
Código de Barras de DNA Taxonômico , DNA de Plantas/análise , DNA de Plantas/genética , Medicina Herbária , Plantas Medicinais/classificação , Plantas Medicinais/genética , Bases de Dados Genéticas , Contaminação de Medicamentos , Medicina Herbária/normas , Filipinas , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA