Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(10): 9040-9057, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936277

RESUMO

Fundamental studies have improved understanding of molecular-level properties and behavior in surfactant-oil-water (SOW) systems at equilibrium and under nonequilibrium conditions. However, confusion persists regarding the terms "microemulsion" and "curvature" in these systems. Microemulsion refers to a single-phase system that does not contain distinct oil or water droplets but at least four different structures with globular domains of nanometer size and sometimes arbitrary shape. The significance of "curvature" in such systems is unclear. At high surfactant concentrations (typically 30 wt % or more), a single phase zone has been identified in which complex molecular arrangements may result in light scattering. As surfactant concentration decreases, the single phase is referred to as a bicontinuous microemulsion, known as the middle phase in a Winsor III triphasic system. Its structure has been described as involving simple or multiple surfactant films surrounding more or less elongated excess oil and water phase globules. In cases where the system separates into two or three phases, known as Winsor I or II systems, one of the phases, containing most of the surfactant, is also confusedly referred to as the microemulsion. In this surfactant-rich phase, the only curved objects are micellar size structures that are soluble in the system and have no real interface but rather exchange surfactant molecules with the external liquid phase at an ultrafast pace. The use of the term "curvature" in the context of these complex microemulsion systems is confusing, particularly when applied to merged nanometer-size globular or percolating domains. In this work, we discuss the terms "microemulsion" and "curvature", and the most simple four-dimensional spatiotemporal model is proposed concerning SOW equilibrated systems near the optimum formulation. This model explains the motion of surfactant molecules due to Brownian movement, which is a quick and arbitrary thermal fluctuation, and limited to a short distance. The resulting observation and behavior will be an average in time and in space, leading to a permanent change in the local microcurvature of the aggregate, thus changing the average from micelle-like to inverse micelle-like order over an extremely short time. The term "microcurvature" is used to explain the small variations of globule size and indicates a close-to-zero mean curvature of the surfactant-containing film surface shape.

2.
Molecules ; 26(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205697

RESUMO

Soap applications for cleaning and personal care have been used for more than 4000 years, dating back to the pharaonic period, and have widely proliferated with the appearance of synthetic surfactants a century ago. Synthetic surfactants used to make macro-micro-nano-emulsions and foams are used in laundry and detergency, cosmetics and pharmaceuticals, food conditioning, emulsified paints, explosives, enhanced oil recovery, wastewater treatment, etc. The introduction of a multivariable approach such as the normalized hydrophilic-lipophilic deviation (HLD N) and of specific structures, tailored with an intramolecular extension to increase solubilization (the so-called extended surfactants), makes it possible to improve the results and performance in surfactant-oil-water systems and their applications. This article aims to present an up-to-date overview of extended surfactants. We first present an introduction regarding physicochemical formulation and its relationship with performance. The second part deals with the importance of HLD N to make a straightforward classification according to the type of surfactants and how formulation parameters can be used to understand the need for an extension of the molecule reach into the oil and water phases. Then, extended surfactant characteristics and strategies to increase performance are outlined. Finally, two specific applications, i.e., drilling fluids and crude oil dewatering, are described.

3.
Langmuir ; 34(31): 9252-9263, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29986590

RESUMO

We have studied emulsions made with two- and three-phase oil-water-surfactant systems in which one of the phases is a microemulsion, the other phases being water or/and oil excess phases. Such systems have been extensively studied in the 1970-1980s for applications in enhanced oil recovery. It was found at that time that the emulsions became very unstable in the three-phase systems, but so far few explanations have been proposed. In the most complete one, Kabalnov and colleagues related the emulsion stability to the probability of hole nucleation in the liquid film separating two nearby emulsion drops and associated this probability to the curvature elastic energy of the surfactant layer covering drop surfaces. We propose a different explanation, linked to another type of interfacial elastic energy, associated with compression of the surfactant layers. As found long ago, the three-phase systems are found near optimum formulation (hydrophile lipophile difference, HLD = 0), where the interfacial tension exhibits a deep minimum. The determination of interfacial elastic properties in low interfacial tension systems is not straightforward. In our present work, we used a spinning drop tensiometer with an oscillating rotation velocity. We show that the interfacial compression elastic modulus and viscosity also exhibit a minimum at optimum formulation. We propose that this minimum is related to the acceleration of the surfactant exchanges between the interface, oil and water, near the optimum formulation. Furthermore, we find that the surfactant partitions close to equally between oil and water at the optimum, as in earlier studies. The interfacial tension gradients that slow the thinning of liquid films between drops are reduced by surfactant exchanges between drops and the interface, which are fast whatever the type of drop, oil or water; film thinning is therefore very rapid, and emulsions are almost as unstable as in the absence of surfactant.

4.
J Colloid Interface Sci ; 519: 27-37, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29477897

RESUMO

When surfactants adsorb at liquid interfaces, they not only decrease the surface tension, they confer rheological properties to the interfaces. There are two types of rheological parameters associated to interfacial layers: compression and shear. The elastic response is described by a storage modulus and the dissipation by a loss modulus or equivalently a surface viscosity. Various types of instruments are available for the measurements of these coefficients, the most common being oscillating pendent drops instruments and rheometers equipped with bicones. These instruments are applicable to systems with large enough interfacial tensions, typically above a few mN/m. We use a new type of instrument based on spinning drop oscillations, allowing to extend the interfacial rheology studies to low and ultralow interfacial tension systems. We present examples of measurements with systems of high and low tension, discuss the possible artifacts and demonstrate the capability of this new technique. We emphasize that the data shown for low interfacial tensions are the first reported in the literature. The instrument is potentially interesting for instance in enhanced oil recovery or demulsification studies.

5.
Cochabamba; UMSS - Fac. Agronomía - TESIS; 2004. 63 ; 28 cm p. graf.
Tese em Espanhol | LIBOCS, LIBOSP | ID: biblio-1334437

RESUMO

Este trabajo de investigación fue realizado en el fundo La Violeta - Cochabamba, en la cual se pretende ofrecer al agricultor un nuevo cultivo para mejorar el nivel nutritivo del ensilaje tradicional. Para dicho efecto se utilizó el amaranto como cultivo alternativo para la conservación como ensilaje. En este trabajo se efectuaron cinco tratamientos de ensilaje con el uso de amaranto y los cuales fueron: T0 (maiz puro), T1 (amaranto + maiz), T2 (amaranto puro), T3 (amaranto + p.elefante), T4 (p.elefante puro), después del tiempo de culminación del proceso de fermentación hasta que el ensilaje se estabilice, se pudo determinar en laboratorio que la utilización de amaranto conservado como ensilaje realza efectivamente el nivel del valor nutritivo del ensilaje a un costo que da excelentes perspectivas a relación del costo de ensilaje de maiz. Proponiendo a los agricultores la adopción de este cultivo como una fuente excelente de alimento para nuestro ganado lechero.


Assuntos
Amaranthus , Silagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA