Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 106: 39-47, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25079050

RESUMO

Ferritins are ubiquitous iron-storage proteins found in all kingdoms of life. They share a common architecture made of 24 subunits of five α-helices. The recombinant Chlorobium tepidum ferritin (rCtFtn) is a structurally interesting protein since sequence alignments with other ferritins show that this protein has a significantly extended C-terminus, which possesses 12 histidine residues as well as several aspartate and glutamic acid residues that are potential metal ion binding residues. We show that the macromolecular assembly of rCtFtn exhibits a cage-like hollow shell consisting of 24 monomers that are related by 4-3-2 symmetry; similar to the assembly of other ferritins. In all ferritins of known structure the short fifth α-helix adopts an acute angle with respect to the four-helix bundle. However, the crystal structure of the rCtFtn presented here shows that this helix adopts a new conformation defining a new assembly of the 4-fold channel of rCtFtn. This conformation allows the arrangement of the C-terminal region into the inner cavity of the protein shell. Furthermore, two Fe(III) ions were found in each ferroxidase center of rCtFtn, with an average FeA-FeB distance of 3 Å; corresponding to a diferric µ-oxo/hydroxo species. This is the first ferritin crystal structure with an isolated di-iron center in an iron-storage ferritin. The crystal structure of rCtFtn and the biochemical results presented here, suggests that rCtFtn presents similar biochemical properties reported for other members of this protein family albeit with distinct structural plasticity.


Assuntos
Proteínas de Bactérias/química , Chlorobium/metabolismo , Ferritinas/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Chlorobium/genética , Cristalografia por Raios X , Ferritinas/genética , Ferritinas/metabolismo , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/metabolismo
2.
PLoS One ; 6(1): e16141, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21283586

RESUMO

K(+) channels share common selectivity characteristics but exhibit a wide diversity in how they are gated open. Leak K(2P) K(+) channels TASK-2, TALK-1 and TALK-2 are gated open by extracellular alkalinization. The mechanism for this alkalinization-dependent gating has been proposed to be the neutralization of the side chain of a single arginine (lysine in TALK-2) residue near the pore of TASK-2, which occurs with the unusual pK(a) of 8.0. We now corroborate this hypothesis by transplanting the TASK-2 extracellular pH (pH(o)) sensor in the background of a pH(o)-insensitive TASK-3 channel, which leads to the restitution of pH(o)-gating. Using a concatenated channel approach, we also demonstrate that for TASK-2 to open, pH(o) sensors must be neutralized in each of the two subunits forming these dimeric channels with no apparent cross-talk between the sensors. These results are consistent with adaptive biasing force analysis of K(+) permeation using a model selectivity filter in wild-type and mutated channels. The underlying free-energy profiles confirm that either a doubly or a singly charged pH(o) sensor is sufficient to abolish ion flow. Atomic detail of the associated mechanism reveals that, rather than a collapse of the pore, as proposed for other K(2P) channels gated at the selectivity filter, an increased height of the energetic barriers for ion translocation accounts for channel blockade at acid pH(o). Our data, therefore, strongly suggest that a cycle of protonation/deprotonation of pH(o)-sensing arginine 224 side chain gates the TASK-2 channel by electrostatically tuning the conformational stability of its selectivity filter.


Assuntos
Ativação do Canal Iônico , Canais de Potássio de Domínios Poros em Tandem/química , Aminoácidos , Animais , Concentração de Íons de Hidrogênio , Camundongos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Conformação Proteica , Multimerização Proteica , Receptor Cross-Talk , Eletricidade Estática , Especificidade por Substrato
3.
Biochimie ; 93(2): 352-60, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20971155

RESUMO

The Chlorobium tepidum ferritin (CtFtn) gene was synthesized and cloned into a pET3a expression vector (Novagen). CtFtn was expressed in Escherichia coli and purified to electrophoretic homogeneity. Sequence analysis indicates that all the conserved amino acids required to form the Fe(2+) oxidizing ferroxidase center are present. Ftn is highly conserved from bacteria to humans, each subunit folds into a 4-helical bundle (helices A-D), with a long loop connecting helices B and C, plus a fifth short E-helix at the C-terminus. Calculations based on the secondary structure of CtFtn predict that each of these helices forms. However, the sequence of CtFtn shows a much longer C-terminus with a significant number of polar amino acids. Size-exclusion chromatography shows that CtFtn elutes at a size consistent with a 24-subunit protein cage. Incubation of CtFtn with Fe(2+) produced an increase in the absorbance at 310 nm consistent with the incorporation of iron inside CtFtn. Assays monitoring ferroxidase activity showed that CtFtn possesses ferroxidase activity but it is less active than human H-chain ferritin. Additionally, the iron loading capacity of CtFtn is significantly reduced compared to proteins from other organisms. We propose that the unique extended C-terminus in CtFtn causes the decreased iron loading in CtFtn and possibly influences the slower rate of iron oxidation at the ferroxidase center.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlorobium , Ferritinas/genética , Ferritinas/metabolismo , Sequência de Aminoácidos , Anaerobiose , Proteínas de Bactérias/química , Biocatálise , Clonagem Molecular , Ferritinas/química , Humanos , Ferro/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxigênio/metabolismo , Conformação Proteica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA