Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 219(3): 27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038438

RESUMO

The design, principles of operation, calibration, and data analysis approaches of the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the NASA Ionospheric Connection (ICON) satellite have been documented prior to the ICON launch. Here we update and expand on the MIGHTI wind data analysis and discuss the on-orbit instrument performance. In particular, we show typical raw data and we describe key processing steps, including the correction of a "signal-intensity dependent phase shift," which is necessitated by unexpected detector behavior. We describe a new zero-wind calibration approach that is preferred over the originally planned approach due to its higher precision. Similar to the original approach, the new approach is independent of any a priori data. A detailed update on the wind uncertainties is provided and compared to the mission requirements, showing that MIGHTI has met the ICON mission requirements. While MIGHTI observations are not required to produce absolute airglow brightness profiles, we describe a relative brightness profile product, which is included in the published data. We briefly review the spatial resolution of the MIGHTI wind data in addition to the data coverage and data gaps that occurred during the nominal mission. Finally, we include comparisons of the MIGHTI wind data with ground-based Fabry-Perot interferometer observations and meteor radar observations, updating previous studies with more recent data, again showing good agreement. The data processing steps covered in this work and all the derived wind data correspond to the MIGHTI data release Version 5 (v05).

2.
J Geophys Res Space Phys ; 126(6)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34650898

RESUMO

Coincident Ionospheric Connections Explorer (ICON) measurements of neutral winds, plasma drifts and total ion densities (:=Ne, electron density) are analyzed during January 1-21, 2020 to reveal the relationship between neutral winds and ionospheric variability on a day-to-day basis. Atmosphere-ionosphere (A-I) connectivity inevitably involves a spectrum of planetary waves (PWs), tides and secondary waves due to wave-wave nonlinear interactions. To provide a definitive attribution of dynamical origins, the current study focuses on a time interval when the longitudinal wave-4 component of the E-region winds is dominated by the eastward-propagating diurnal tide with zonal wavenumber s = -3 (DE3). DE3 is identified in winds and ionospheric parameters through its characteristic dependence on local solar time and longitude as ICON's orbit precesses. Superimposed on this trend are large variations in low-latitude DE3 wave-4 zonal winds (±40 ms-1) and topside F-region equatorial vertical drifts at periods consistent with 2-days and 6-days PWs, and a ~3-day ultra-fast Kelvin wave (UFKW), coexisting during this time interval; the DE3 winds, dynamo electric fields, and drifts are modulated by these waves. Wave-4 variability in Ne is of order 25%-35%, but the origins are more complex, likely additionally reflecting transport by ~20-25 ms-1 wave-4 in-situ winds containing strong signatures of DE3 interactions with ambient diurnal Sun-synchronous winds and ion drag. These results are the first to show a direct link between day-to-day wave-4 variability in contemporaneously measured E-region neutral winds and F-region ionospheric drifts and electron densities.

3.
J Geophys Res Space Phys ; 126(2)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33828935

RESUMO

Observations of the nighttime thermospheric wind from two ground-based Fabry-Perot Interferometers are compared to the level 2.1 and 2.2 data products from the Michelson Interferometer Global High-resolution Thermospheric Imaging (MIGHTI) onboard National Aeronautics and Space Administration's Ionospheric Connection Explorer to assess and validate the methodology used to generate measurements of neutral thermospheric winds observed by MIGHTI. We find generally good agreement between observations approximately coincident in space and time with mean differences less than 11 m/s in magnitude and standard deviations of about 20-35 m/s. These results indicate that the independent calculations of the zero-wind reference used by the different instruments do not contain strong systematic or physical biases, even though the observations were acquired during solar minimum conditions when the measured airglow intensity is weak. We argue that the slight differences in the estimated wind quantities between the two instrument types can be attributed to gradients in the airglow and thermospheric wind fields and the differing viewing geometries used by the instruments.

4.
J Geophys Res Space Phys ; 126(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33868889

RESUMO

We compare coincident thermospheric neutral wind observations made by the Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI) on the Ionospheric Connection Explorer (ICON) spacecraft, and four ground-based specular meteor radars (SMRs). Using the green-line MIGHTI channel, we analyze 1158 coincidences between Dec 2019 and May 2020 in the altitude range from 94 to 104 km where the observations overlap. We find that the two datasets are strongly correlated (r = 0.82) with a small mean difference (4.5 m/s). Although this agreement is good, an analysis of known error sources (e.g., shot noise, calibration errors, and analysis assumptions) can only account for about a quarter of the disagreement variance. The unexplained variance is 27.8% of the total signal variance and could be caused by unknown errors. However, based on an analysis of the spatial and caused by temporal variability of the wind on scales ≲70 min. The observed magnitudes agree well during temporal averaging of the two measurement modalities, we suggest that some of the disagreement is likely the night, but during the day, MIGHTI observes 16%-25% faster winds than the SMRs. This remains unresolved but is similar in certain ways to previous SMR-satellite comparisons.

5.
J Geophys Res Space Phys ; 126(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35070616

RESUMO

A quasi-2-day wave (Q2DW) event during January-February, 2020, is investigated in terms of its propagation from 96 to 250 km as a function of latitude (10°S to 30°N), its nonlinear interactions with migrating tides to produce 16 and 9.6-h secondary waves (SWs), and the plasma drift and density perturbations that it produces in the topside F-region (590-607 km) between magnetic latitudes 18°S and 18°N. This is accomplished through analysis of coincident Ionospheric Connections Explorer (ICON) measurements of neutral winds, plasma drifts and ion densities, and wind measurements from four low-latitude (±15°) specular meteor radars (SMRs). The Q2DW westward-propagating components that existed during this period consist of zonal wavenumbers s = 2 and s = 3, that is, Q2DW+2 and Q2DW+3 (e.g., He, Chau et al., 2021, https://doi.org/10.1029/93jd00380). SWs in the ICON measurements are inferred from Q2DW+2 and Q2DW+3 characteristics derived from traditional longitude-UT fits that potentially contain aliasing contributions from SWs ("apparent" Q2DWs), from fits to space-based zonal wavenumbers that each reflect the aggregate signature of either Q2DW+2 or Q2DW+3 and its SWs combined ("effective" Q2DWs), and based on information contained in published numerical simulations. The total Q2DW ionospheric responses consists of F-region field-aligned and meridional drifts of order ±25 ms-1 and ±5-7 ms-1, respectively, and total ion density perturbations of order (±10%-25%). It is shown that the SWs can sometimes make substantial contributions to the Q2DW winds, drifts, and plasma densities.

6.
Earth Space Sci ; 7(10): e2020EA001164, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33134433

RESUMO

The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on NASA's Ionospheric Connection Explorer (ICON) mission is designed to measure the neutral wind and temperature between 90 and ∼300 km altitude. Using the Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopy technique, observations from MIGHTI can be used to derive thermospheric winds by measuring Doppler shifts of the atomic oxygen red line (630.0 nm) and green line (557.7 nm). Harding et al. (2017, https://doi.org/10.1007/s11214-017-0359-3) (Harding17) describe the wind retrieval algorithm in detail and point out the large uncertainties that result near the solar terminators and equatorial arcs, regions of large spatial gradients in airglow volume emission rates (VER). The uncertainties originate from the assumption of a constant VER at every given altitude, resulting in errors where the assumption is not valid when limb sounders, such as MIGHTI, observe regions with significant VER gradients. In this work, we introduce a new wind retrieval algorithm (Wu20) with the ability to account for VER that is asymmetric along the line of sight with respect to the tangent point. Using the predicted ICON orbit and simulated global VER variation, the greatest impact of the symmetric airglow assumption to the ICON vector wind product is found within 30° from the terminator when the spacecraft is in the dayside, causing an error of at least 10 m/s. The new algorithm developed in this study reduces the error near the terminator by a factor of 10. Although Wu20 improves the accuracy of the retrievals, it loses precision by 75% compared to Harding17.

7.
Opt Eng ; 59(1)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33867595

RESUMO

The Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI) instrument on NASA's Ionospheric Connection Explorer's mission will measure neutral winds in the Earth's thermosphere. We investigate how thermal changes to the instrument's optical bench affect the relative position of the image recorded by the camera. The thermal shift is measured by fitting the image of a series of reference notches and determining their current position on the camera with subpixel precision. Analyzing ground-based calibration data, we find that the image position is not affected within the uncertainty of the analysis for the applied thermal changes. We also address the question of the analysis uncertainty with signal-to-noise ratio.

8.
Appl Opt ; 58(13): 3613-3619, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31044863

RESUMO

The mean fringe phase measured by Doppler asymmetric spatial heterodyne spectroscopy is a direct measure of atmospheric wind. The uncertainty in measuring the mean phase is investigated and found to be accurately predicted by an analytic formula for moderate and high signal-to-noise ratios. At lower signal-to-noise ratios, numeric issues in the phase calculation result in non-Gaussian distributions of mean phase. Analysis techniques are described to mitigate these numeric issues to the extent possible.

9.
Opt Eng ; 58(5)2019.
Artigo em Inglês | MEDLINE | ID: mdl-34531618

RESUMO

We describe the design and ground-based performance of the two-color calibration lamp for the Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI) instrument on the NASA Ionospheric Connection (ICON) satellite. The calibration lamp assembly contains radio frequency excited krypton and neon lamps, which generate emission lines at 557 and 630 nm, respectively, and which are used to monitor thermal drifts in the two MIGHTI Doppler asymmetric spatial heterodyne interferometers. The lamps are coupled to two mixed optical fiber bundles that deliver the calibration signals to the two MIGHTI optical units. The assembly starts reliably, consumes <8 W, and has passed environmental testing for the ICON satellite. The total mass of the lamp assembly is 1.8 kg. Special features of the assembly and its implementation are described along with results of life tests.

10.
Space Sci Rev ; 214(1)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-30166692

RESUMO

The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) is a satellite experiment scheduled to launch on NASA's Ionospheric Connection Explorer (ICON) in 2017. MIGHTI is designed to measure horizontal neutral winds and neutral temperatures in the terrestrial thermosphere. Temperatures will be inferred by imaging the molecular oxygen Atmospheric band (A band) on the limb in the lower thermosphere. MIGHTI will measure the spectral shape of the A band using discrete wavelength channels to infer the ambient temperature from the rotational envelope of the band. Here we present simulated temperature retrievals based on the as-built characteristics of the instrument and the expected emission rate profile of the A band for typical daytime and nighttime conditions. We find that for a spherically symmetric atmosphere, the measurement precision is 1 K between 90-105 km during the daytime whereas during the nighttime it increases from 1 K at 90 km to 3 K at 105 km. We also find that the accuracy is 2 K to 11 K for the same altitudes. The expected MIGHTI temperature precision is within the measurement requirements for the ICON mission.

11.
Appl Opt ; 56(8): 2090-2098, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28375293

RESUMO

Development of a new generation of low-groove density-blazed echelle gratings optimized for MIGHTI, a space-borne spatial heterodyne interferometer operating in the visible and near infrared is described. Special demands are placed on the wavefront accuracy, groove profile, and efficiency of these gratings. These demands required a new ruling for this application, with significant improvements over existing gratings. Properties of a new generation of highly efficient, plane gratings with 64 grooves/mm blazed at 8.2° are reported.

12.
Space Sci Rev ; 212(1-2): 553-584, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30008488

RESUMO

The Michelson Interferometer for Global High-resolution imaging of the Thermosphere and Ionosphere (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90km and 300km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0nm and 557.7nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

13.
Space Sci Rev ; 212(1-2): 585-600, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30034033

RESUMO

We present an algorithm to retrieve thermospheric wind profiles from measurements by the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on NASA's Ionospheric Connection Explorer (ICON) mission. MIGHTI measures interferometric limb images of the green and red atomic oxygen emissions at 557.7 nm and 630.0 nm, spanning 90-300 km. The Doppler shift of these emissions represents a remote measurement of the wind at the tangent point of the line of sight. Here we describe the algorithm which uses these images to retrieve altitude profiles of the line-of-sight wind. By combining the measurements from two MIGHTI sensors with perpendicular lines of sight, both components of the vector horizontal wind are retrieved. A comprehensive truth model simulation that is based on TIME-GCM winds and various airglow models is used to determine the accuracy and precision of the MIGHTI data product. Accuracy is limited primarily by spherical asymmetry of the atmosphere over the spatial scale of the limb observation, a fundamental limitation of space-based wind measurements. For 80% of the retrieved wind samples, the accuracy is found to be better than 5.8 m/s (green) and 3.5 m/s (red). As expected, significant errors are found near the day/night boundary and occasionally near the equatorial ionization anomaly, due to significant variations of wind and emission rate along the line of sight. The precision calculation includes pointing uncertainty and shot, read, and dark noise. For average solar minimum conditions, the expected precision meets requirements, ranging from 1.2 to 4.7 m/s.

14.
Space Sci Rev ; 212(1-2): 601-613, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30034034

RESUMO

The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI.

15.
Appl Opt ; 54(31): F158-63, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26560603

RESUMO

Spatial heterodyne spectroscopy (SHS) is based on traditional Michelson interferometry. However, instead of employing retro-reflectors in the interferometer arms, one or both of which are moving, it uses fixed, tilted diffraction gratings and an imaging detector to spatially sample the optical path differences. This concept allows high-resolution, high-throughput spectroscopy without moving interferometer parts, particularly suitable for problems that require compact, robust instrumentation. Here, we briefly review about 20 years of ground- and space-based SHS work performed at the U.S. Naval Research Laboratory (NRL), which started with a visit by Prof. Fred Roesler to NRL in 1993.

16.
Appl Opt ; 52(33): 8082-8, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24513761

RESUMO

The use of a Doppler asymmetric spatial heterodyne (DASH) interferometer with an Echelle grating provides the ability to simultaneously image the 558 and 630 nm emission lines (e.g., at grating orders of n=8 and n=7, respectively) of atomic oxygen in the thermosphere. By measuring the Doppler shifts of these lines (expected relative change in wavelength on the order of 10⁻8), we are able to determine the thermospheric winds. Because the expected wavelength changes due to the Doppler shift are so small, understanding, monitoring, and accounting for thermal effects is expected to be important. Previously, the thermal behavior of a temperature-compensated monolithic DASH interferometer was found to have a higher thermal sensitivity than predicted by a simple model [Opt. Express 18, 26430, 2010]. A follow-up study [Opt. Express 20, 9535, 2012] suggested that this is due to thermal distortion of the interferometer, which consists of materials with different coefficients of thermal expansion. In this work, we characterize the thermal drift of a nonmonolithic Echelle DASH interferometer and discuss the implications of these results on the use of only a single wavelength source during calibration. Furthermore, we perform a finite element analysis of the earlier monolithic interferometer in order to determine how distortion would affect the thermal sensitivity of that device. Incorporating that data into the model, we find good agreement between the modified model and the measured thermal sensitivities. These findings emphasize the fact that distortion needs to be considered for the design of thermally compensated, monolithic DASH interferometers.

17.
Opt Express ; 20(9): 9535-44, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22535044

RESUMO

When analyzing the fringe pattern of an interferogram to determine atmospheric wind velocities, inhomogeneities in the optical components and illumination can introduce uncertainty into the results. These variations in the image, which are generally characteristics of the measurement device, are commonly referred to as the "flat-field" of the system. In this work we discuss the effect of this flat-field on measurements made with a Doppler Asymmetric Spatial Heterodyne (DASH) spectrometer. It is found that the flat-field can have a significant effect on any single calculation of the fringe phase, but because the flat-field affects all measurements made with the same system, the uncertainty in the derived wind velocity, which is determined through a comparison of two interferogram fringe phases, typically remains small. Nonetheless, it is recommended to account for the flat-field when analyzing DASH data, if possible. To this end we discuss a method for determining the flat-field using only temperature variations of the system, which is particularly suitable for space-based instruments.


Assuntos
Algoritmos , Artefatos , Atmosfera/análise , Atmosfera/química , Modelos Teóricos , Refratometria/métodos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...