Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
Curr Oncol ; 31(4): 1865-1875, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38668043

RESUMO

Immune checkpoint inhibitors (ICIs) are increasingly used in the treatment of many tumor types, and durable responses can be observed in select populations. However, patients may exhibit significant immune-related adverse events (irAEs) that may lead to morbidity. There is limited information on whether the presence of specific germline mutations may highlight those at elevated risk of irAEs. We evaluated 117 patients with metastatic solid tumors or hematologic malignancies who underwent genomic analysis through the ongoing Personalized OncoGenomics (POG) program at BC Cancer and received an ICI during their treatment history. Charts were reviewed for irAEs. Whole genome sequencing of a fresh biopsy and matched normal specimens (blood) was performed at the time of POG enrollment. Notably, we found that MHC class I alleles in the HLA-B27 family, which have been previously associated with autoimmune conditions, were associated with grade 3 hepatitis and pneumonitis (q = 0.007) in patients treated with combination PD-1/PD-L1 and CTLA-4 inhibitors, and PD-1 inhibitors in combination with IDO-1 inhibitors. These data highlight that some patients may have a genetic predisposition to developing irAEs.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Neoplasias/tratamento farmacológico , Feminino , Pessoa de Meia-Idade , Idoso , Mutação em Linhagem Germinativa , Adulto , Idoso de 80 Anos ou mais
2.
J Clin Pathol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429092

RESUMO

We demonstrate a method for tissue microdissection using scanning laser ablation that is approximately two orders of magnitude faster than conventional laser capture microdissection. Our novel approach uses scanning laser optics and a slide coating under the tissue that can be excited by the laser to selectively eject regions of tissue for further processing. Tissue was dissected at 0.117 s/mm2 without reduction in yield, sequencing insert size or base quality compared with undissected tissue. From eight cases, 58-416 mm2 of tissue was obtained from one to four slides in 7-48 seconds total dissection time per case. These samples underwent exome sequencing and we found the variant allelic fraction increased in regions enriched for tumour as expected. This suggests that our ablation technique may be useful as a tool in both clinical and research labs.

3.
J Clin Pathol ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182402

RESUMO

AIMS: Genomic sequencing of lymphomas is under-represented in routine clinical testing despite having prognostic and predictive value. Clinical implementation is challenging due to a lack of consensus on reportable targets and a paucity of reference samples. We organised a cross-validation study of a lymphoma-tailored next-generation sequencing panel between two College of American Pathologists (CAP)-accredited clinical laboratories to mitigate these challenges. METHODS: A consensus for the genomic targets was discussed between the two institutes based on recurrence in diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukaemia and T-cell lymphomas. Using the same genomic targets, each laboratory ordered libraries independently and a cross-validation study was designed to exchange samples (8 cell lines and 22 clinical samples) and their FASTQ files. RESULTS: The sensitivity of the panel when comparing different library preparation and bioinformatic workflows was between 97% and 99% and specificity was 100% when a 5% limit of detection cut-off was applied. To evaluate how the current standards for variant classification of tumours apply to lymphomas, the Association for Molecular Pathology/American Society of Clinical Oncology/CAP and OncoKB classification systems were applied to the panel. The majority of variants were assigned a possibly actionable class or likely pathogenic due to more limited evidence in the literature. CONCLUSIONS: The cross-validation study highlights the benefits of sample and data exchange for clinical validation and provided a framework for reporting the findings in lymphoid malignancies.

4.
Cancer Cell ; 41(12): 2117-2135.e12, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37977148

RESUMO

Pediatric acute myeloid leukemia (pAML) is characterized by heterogeneous cellular composition, driver alterations and prognosis. Characterization of this heterogeneity and how it affects treatment response remains understudied in pediatric patients. We used single-cell RNA sequencing and single-cell ATAC sequencing to profile 28 patients representing different pAML subtypes at diagnosis, remission and relapse. At diagnosis, cellular composition differed between genetic subgroups. Upon relapse, cellular hierarchies transitioned toward a more primitive state regardless of subtype. Primitive cells in the relapsed tumor were distinct compared to cells at diagnosis, with under-representation of myeloid transcriptional programs and over-representation of other lineage programs. In some patients, this was accompanied by the appearance of a B-lymphoid-like hierarchy. Our data thus reveal the emergence of apparent subtype-specific plasticity upon treatment and inform on potentially targetable processes.


Assuntos
Leucemia Mieloide Aguda , Humanos , Criança , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Prognóstico , Recidiva
5.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961641

RESUMO

Human papillomavirus (HPV) integration has been implicated in transforming HPV infection into cancer, but its genomic consequences have been difficult to study using short-read technologies. To resolve the dysregulation associated with HPV integration, we performed long-read sequencing on 63 cervical cancer genomes. We identified six categories of integration events based on HPV-human genomic structures. Of all HPV integrants, defined as two HPV-human breakpoints bridged by an HPV sequence, 24% contained variable copies of HPV between the breakpoints, a phenomenon we termed heterologous integration. Analysis of DNA methylation within and in proximity to the HPV genome at individual integration events revealed relationships between methylation status of the integrant and its orientation and structure. Dysregulation of the human epigenome and neighboring gene expression in cis with the HPV-integrated allele was observed over megabase-ranges of the genome. By elucidating the structural, epigenetic, and allele-specific impacts of HPV integration, we provide insight into the role of integrated HPV in cervical cancer.

6.
Biotechniques ; 75(2): 47-55, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37551834

RESUMO

High-throughput total nucleic acid (TNA) purification methods based on solid-phase reversible immobilization (SPRI) beads produce TNA suitable for both genomic and transcriptomic applications. Even so, small RNA species, including miRNA, bind weakly to SPRI beads under standard TNA purification conditions, necessitating a separate workflow using column-based methods that are difficult to automate. Here, an SPRI-based high-throughput TNA purification protocol that recovers DNA, RNA and small RNA, called GSC-modified RLT+ Aline bead-based protocol (GRAB-ALL), which incorporates modifications to enhance small RNA recovery is presented. GRAB-ALL was benchmarked against existing nucleic acid purification workflows and GRAB-ALL efficiently purifies TNA, including small RNA, for next-generation sequencing applications in a plate-based format suitable for automated high-throughput sample preparation.


Assuntos
DNA , RNA , RNA/genética , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
7.
NPJ Precis Oncol ; 7(1): 73, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558751

RESUMO

Immune checkpoint inhibitors (ICI) are highly effective in specific cancers where canonical markers of antitumor immunity are used for patient selection. Improved predictors of T cell-inflammation are needed to identify ICI-responsive tumor subsets in additional cancer types. We investigated associations of a 4-chemokine expression signature (c-Score: CCL4, CCL5, CXCL9, CXCL10) with metrics of antitumor immunity across tumor types. Across cancer entities from The Cancer Genome Atlas, subgroups of tumors displayed high expression of the c-Score (c-Scorehi) with increased expression of immune checkpoint (IC) genes and transcriptional hallmarks of the cancer-immunity cycle. There was an incomplete association of the c-Score with high tumor mutation burden (TMB), with only 15% of c-Scorehi tumors displaying ≥10 mutations per megabase. In a heterogeneous pan-cancer cohort of 82 patients, with advanced and previously treated solid cancers, c-Scorehi tumors had a longer median time to progression (103 versus 72 days, P = 0.012) and overall survival (382 versus 196 days, P = 0.038) following ICI therapy initiation, compared to patients with low c-Score expression. We also found c-Score stratification to outperform TMB assignment for overall survival prediction (HR = 0.42 [0.22-0.79], P = 0.008 versus HR = 0.60 [0.29-1.27], P = 0.18, respectively). Assessment of the c-Score using the TIDE and PredictIO databases, which include ICI treatment outcomes from 10 tumor types, provided further support for the c-Score as a predictive ICI therapeutic biomarker. In summary, the c-Score identifies patients with hallmarks of T cell-inflammation and potential response to ICI treatment across cancer types, which is missed by TMB assignment.

8.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298494

RESUMO

Globally, viral infections substantially contribute to cancer development. Oncogenic viruses are taxonomically heterogeneous and drive cancers using diverse strategies, including epigenomic dysregulation. Here, we discuss how oncogenic viruses disrupt epigenetic homeostasis to drive cancer and focus on how virally mediated dysregulation of host and viral epigenomes impacts the hallmarks of cancer. To illustrate the relationship between epigenetics and viral life cycles, we describe how epigenetic changes facilitate the human papillomavirus (HPV) life cycle and how changes to this process can spur malignancy. We also highlight the clinical impact of virally mediated epigenetic changes on cancer diagnosis, prognosis, and treatment.


Assuntos
Neoplasias , Vírus , Humanos , Vírus Oncogênicos/genética , Epigenoma , Neoplasias/patologia , Epigênese Genética , Metilação de DNA
9.
J Clin Oncol ; 41(25): 4164-4177, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37319384

RESUMO

PURPOSE: Diffuse large B-cell lymphoma (DLBCL) is cured in more than 60% of patients, but outcomes remain poor for patients experiencing disease progression or relapse (refractory or relapsed DLBCL [rrDLBCL]), particularly if these events occur early. Although previous studies examining cohorts of rrDLBCL have identified features that are enriched at relapse, few have directly compared serial biopsies to uncover biological and evolutionary dynamics driving rrDLBCL. Here, we sought to confirm the relationship between relapse timing and outcomes after second-line (immuno)chemotherapy and determine the evolutionary dynamics that underpin that relationship. PATIENTS AND METHODS: Outcomes were examined in a population-based cohort of 221 patients with DLBCL who experienced progression/relapse after frontline treatment and were treated with second-line (immuno)chemotherapy with an intention-to-treat with autologous stem-cell transplantation (ASCT). Serial DLBCL biopsies from a partially overlapping cohort of 129 patients underwent molecular characterization, including whole-genome or whole-exome sequencing in 73 patients. RESULTS: Outcomes to second-line therapy and ASCT are superior for late relapse (>2 years postdiagnosis) versus primary refractory (<9 months) or early relapse (9-24 months). Diagnostic and relapse biopsies were mostly concordant for cell-of-origin classification and genetics-based subgroup. Despite this concordance, the number of mutations exclusive to each biopsy increased with time since diagnosis, and late relapses shared few mutations with their diagnostic counterpart, demonstrating a branching evolution pattern. In patients with highly divergent tumors, many of the same genes acquired new mutations independently in each tumor, suggesting that the earliest mutations in a shared precursor cell constrain tumor evolution toward the same genetics-based subgroups at both diagnosis and relapse. CONCLUSION: These results suggest that late relapses commonly represent genetically distinct and chemotherapy-naïve disease and have implications for optimal patient management.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma Difuso de Grandes Células B , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Doença Crônica , Transplante Autólogo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
10.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326978

RESUMO

SUMMARY: Mapping genetic interactions and essentiality networks in human cell lines has been used to identify vulnerabilities of cells carrying specific genetic alterations and to associate novel functions to genes, respectively. In vitro and in vivo genetic screens to decipher these networks are resource-intensive, limiting the throughput of samples that can be analyzed. In this application note, we provide an R package we call Genetic inteRaction and EssenTiality neTwork mApper (GRETTA). GRETTA is an accessible tool for in silico genetic interaction screens and essentiality network analyses using publicly available data, requiring only basic R programming knowledge. AVAILABILITY AND IMPLEMENTATION: The R package, GRETTA, is licensed under GNU General Public License v3.0 and freely available at https://github.com/ytakemon/GRETTA and https://doi.org/10.5281/zenodo.6940757, with documentation and tutorial. A Singularity container is also available at https://cloud.sylabs.io/library/ytakemon/gretta/gretta.


Assuntos
Software , Humanos , Mutação
11.
Cancers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37345142

RESUMO

CIC encodes a transcriptional repressor and MAPK signalling effector that is inactivated by loss-of-function mutations in several cancer types, consistent with a role as a tumour suppressor. Here, we used bioinformatic, genomic, and proteomic approaches to investigate CIC's interaction networks. We observed both previously identified and novel candidate interactions between CIC and SWI/SNF complex members, as well as novel interactions between CIC and cell cycle regulators and RNA processing factors. We found that CIC loss is associated with an increased frequency of mitotic defects in human cell lines and an in vivo mouse model and with dysregulated expression of mitotic regulators. We also observed aberrant splicing in CIC-deficient cell lines, predominantly at 3' and 5' untranslated regions of genes, including genes involved in MAPK signalling, DNA repair, and cell cycle regulation. Our study thus characterises the complexity of CIC's functional network and describes the effect of its loss on cell cycle regulation, mitotic integrity, and transcriptional splicing, thereby expanding our understanding of CIC's potential roles in cancer. In addition, our work exemplifies how multi-omic, network-based analyses can be used to uncover novel insights into the interconnected functions of pleiotropic genes/proteins across cellular contexts.

12.
Blood ; 142(6): 561-573, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37084389

RESUMO

Follicular lymphoma (FL) accounts for ∼20% of all new lymphoma cases. Increases in cytological grade are a feature of the clinical progression of this malignancy, and eventual histologic transformation (HT) to the aggressive diffuse large B-cell lymphoma (DLBCL) occurs in up to 15% of patients. Clinical or genetic features to predict the risk and timing of HT have not been described comprehensively. In this study, we analyzed whole-genome sequencing data from 423 patients to compare the protein coding and noncoding mutation landscapes of untransformed FL, transformed FL, and de novo DLBCL. This revealed 2 genetically distinct subgroups of FL, which we have named DLBCL-like (dFL) and constrained FL (cFL). Each subgroup has distinguishing mutational patterns, aberrant somatic hypermutation rates, and biological and clinical characteristics. We implemented a machine learning-derived classification approach to stratify patients with FL into cFL and dFL subgroups based on their genomic features. Using separate validation cohorts, we demonstrate that cFL status, whether assigned with this full classifier or a single-gene approximation, is associated with a reduced rate of HT. This implies distinct biological features of cFL that constrain its evolution, and we highlight the potential for this classification to predict HT from genetic features present at diagnosis.


Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Folicular/patologia , Mutação , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia
13.
NPJ Precis Oncol ; 7(1): 31, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964191

RESUMO

There is emerging evidence about the predictive role of homologous recombination deficiency (HRD), but this is less defined in gastrointestinal (GI) and thoracic malignancies. We reviewed whole genome (WGS) and transcriptomic (RNA-Seq) data from advanced GI and thoracic cancers in the Personalized OncoGenomics trial (NCT02155621) to evaluate HRD scores and single base substitution (SBS)3, which is associated with BRCA1/2 mutations and potentially predictive of defective HRD. HRD scores were calculated by sum of loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions scores. Regression analyses examined the association between HRD and time to progression on platinum (TTPp). We included 223 patients with GI (n = 154) or thoracic (n = 69) malignancies. TTPp was associated with SBS3 (p < 0.01) but not HRD score in patients with GI malignancies, whereas neither was associated with TTPp in thoracic malignancies. Tumors with gBRCA1/2 mutations and a somatic second alteration exhibited high SBS3 and HRD scores, but these signatures were also present in several tumors with germline but no somatic second alterations, suggesting silencing of the wild-type allele or BRCA1/2 haploinsufficiency. Biallelic inactivation of an HR gene, including loss of XRCC2 and BARD1, was identified in BRCA1/2 wild-type HRD tumors and these patients had prolonged response to platinum. Thoracic cases with high HRD score were associated with high RECQL5 expression (p ≤ 0.025), indicating another potential mechanism of HRD. SBS3 was more strongly associated with TTPp in patients with GI malignancies and may be complementary to using HRD and BRCA status in identifying patients who benefit from platinum therapy.

14.
medRxiv ; 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36945587

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is cured in over 60% of patients, but outcomes are poor for patients with relapsed or refractory disease (rrDLBCL). Here, we performed whole genome/exome sequencing (WGS/WES) on tumors from 73 serially-biopsied patients with rrDLBCL. Based on the observation that outcomes to salvage therapy/autologous stem cell transplantation are related to time-to-relapse, we stratified patients into groups according to relapse timing to explore the relationship to genetic divergence and sensitivity to salvage immunochemotherapy. The degree of mutational divergence increased with time between biopsies, yet tumor pairs were mostly concordant for cell-of-origin, oncogene rearrangement status and genetics-based subgroup. In patients with highly divergent tumors, several genes acquired exclusive mutations independently in each tumor, which, along with concordance of genetics-based subgroups, suggests that the earliest mutations in a shared precursor cell constrain tumor evolution. These results suggest that late relapses commonly represent genetically distinct and chemotherapy-naïve disease.

15.
Cancers (Basel) ; 14(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230545

RESUMO

Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.

16.
Nat Commun ; 13(1): 5941, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209277

RESUMO

Oncogenic KRAS mutations are absent in approximately 10% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) and may represent a subgroup of mPDAC with therapeutic options beyond standard-of-care cytotoxic chemotherapy. While distinct gene fusions have been implicated in KRAS wildtype mPDAC, information regarding other types of mutations remain limited, and gene expression patterns associated with KRAS wildtype mPDAC have not been reported. Here, we leverage sequencing data from the PanGen trial to perform comprehensive characterization of the molecular landscape of KRAS wildtype mPDAC and reveal increased frequency of chr1q amplification encompassing transcription factors PROX1 and NR5A2. By leveraging data from colorectal adenocarcinoma and cholangiocarcinoma samples, we highlight similarities between cholangiocarcinoma and KRAS wildtype mPDAC involving both mutation and expression-based signatures and validate these findings using an independent dataset. These data further establish KRAS wildtype mPDAC as a unique molecular entity, with therapeutic opportunities extending beyond gene fusion events.


Assuntos
Adenocarcinoma , Neoplasias dos Ductos Biliares , Carcinoma Ductal Pancreático , Colangiocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Carcinoma Ductal Pancreático/patologia , Colangiocarcinoma/genética , Humanos , Mutação , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética , Neoplasias Pancreáticas
17.
BMC Med Genomics ; 15(1): 190, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071521

RESUMO

BACKGROUND: Tumor mutation burden (TMB) is a key characteristic used in a tumor-type agnostic context to inform the use of immune checkpoint inhibitors (ICI). Accurate and consistent measurement of TMB is crucial as it can significantly impact patient selection for therapy and clinical trials, with a threshold of 10 mutations/Mb commonly used as an inclusion criterion. Studies have shown that the most significant contributor to variability in mutation counts in whole genome sequence (WGS) data is differences in analysis methods, even more than differences in extraction or library construction methods. Therefore, tools for improving consistency in whole genome TMB estimation are of clinical importance. METHODS: We developed a distributable TMB analysis suite, TMBur, to address the need for genomic TMB estimate consistency in projects that span jurisdictions. TMBur is implemented in Nextflow and performs all analysis steps to generate TMB estimates directly from fastq files, incorporating somatic variant calling with Manta, Strelka2, and Mutect2, and microsatellite instability profiling with MSISensor. These tools are provided in a Singularity container downloaded by the workflow at runtime, allowing the entire workflow to be run identically on most computing platforms. To test the reproducibility of TMBur TMB estimates, we performed replicate runs on WGS data derived from the COLO829 and COLO829BL cell lines at multiple research centres. The clinical value of derived TMB estimates was then evaluated using a cohort of 90 patients with advanced, metastatic cancer that received ICIs following WGS analysis. Patients were split into groups based on a threshold of 10/Mb, and time to progression from initiation of ICIs was examined using Kaplan-Meier and cox-proportional hazards analyses. RESULTS: TMBur produced identical TMB estimates across replicates and at multiple analysis centres. The clinical utility of TMBur-derived TMB estimates were validated, with a genomic TMB ≥ 10/Mb demonstrating improved time to progression, even after correcting for differences in tumor type (HR = 0.39, p = 0.012). CONCLUSIONS: TMBur, a shareable workflow, generates consistent whole genome derived TMB estimates predictive of response to ICIs across multiple analysis centres. Reproducible TMB estimates from this approach can improve collaboration and ensure equitable treatment and clinical trial access spanning jurisdictions.


Assuntos
Biomarcadores Tumorais/genética , Mutação , Neoplasias/genética , Sequenciamento Completo do Genoma/métodos , Humanos , Estimativa de Kaplan-Meier , Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Neoplasias/metabolismo , Neoplasias/terapia , Seleção de Pacientes , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes
18.
Elife ; 112022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35787786

RESUMO

Imprinting is a critical part of normal embryonic development in mammals, controlled by defined parent-of-origin (PofO) differentially methylated regions (DMRs) known as imprinting control regions. Direct nanopore sequencing of DNA provides a means to detect allelic methylation and to overcome the drawbacks of methylation array and short-read technologies. Here, we used publicly available nanopore sequencing data for 12 standard B-lymphocyte cell lines to acquire the genome-wide mapping of imprinted intervals in humans. Using the sequencing data, we were able to phase 95% of the human methylome and detect 94% of the previously well-characterized, imprinted DMRs. In addition, we found 42 novel imprinted DMRs (16 germline and 26 somatic), which were confirmed using whole-genome bisulfite sequencing (WGBS) data. Analysis of WGBS data in mouse (Mus musculus), rhesus monkey (Macaca mulatta), and chimpanzee (Pan troglodytes) suggested that 17 of these imprinted DMRs are conserved. Some of the novel imprinted intervals are within or close to imprinted genes without a known DMR. We also detected subtle parental methylation bias, spanning several kilobases at seven known imprinted clusters. At these blocks, hypermethylation occurs at the gene body of expressed allele(s) with mutually exclusive H3K36me3 and H3K27me3 allelic histone marks. These results expand upon our current knowledge of imprinting and the potential of nanopore sequencing to identify imprinting regions using only parent-offspring trios, as opposed to the large multi-generational pedigrees that have previously been required.


Assuntos
Impressão Genômica , Sequenciamento por Nanoporos , Alelos , Animais , Metilação de DNA , Feminino , Células Germinativas , Mamíferos/genética , Camundongos , Gravidez
19.
J Appl Lab Med ; 7(5): 1025-1036, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723286

RESUMO

BACKGROUND: To support the implementation of high-throughput pipelines suitable for SARS-CoV-2 sequencing and analysis in a clinical laboratory, we developed an automated sample preparation and analysis workflow. METHODS: We used the established ARTIC protocol with approximately 400 bp amplicons sequenced on Oxford Nanopore's MinION. Sequences were analyzed using Nextclade, assigning both a clade and quality score to each sample. RESULTS: A total of 2179 samples on twenty-five 96-well plates were sequenced. Plates of purified RNA were processed within 12 h, sequencing required up to 24 h, and analysis of each pooled plate required 1 h. The use of samples with known threshold cycle (Ct) values enabled normalization, acted as a quality control check, and revealed a strong correlation between sample Ct values and successful analysis, with 85% of samples with Ct < 30 achieving a "good" Nextclade score. Less abundant samples responded to enrichment with the fraction of Ct > 30 samples achieving a "good" classification rising by 60% after addition of a post-ARTIC PCR normalization. Serial dilutions of 3 variant of concern samples, diluted from approximately Ct = 16 to approximately Ct = 50, demonstrated successful sequencing to Ct = 37. The sample set contained a median of 24 mutations per sample and a total of 1281 unique mutations with reduced sequence read coverage noted in some regions of some samples. A total of 10 separate strains were observed in the sample set, including 3 variants of concern prevalent in British Columbia in the spring of 2021. CONCLUSIONS: We demonstrated a robust automated sequencing pipeline that takes advantage of input Ct values to improve reliability.


Assuntos
COVID-19 , Sequenciamento por Nanoporos , Nanoporos , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Reprodutibilidade dos Testes , SARS-CoV-2/genética
20.
Front Genet ; 13: 834764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571031

RESUMO

Formalin fixation of paraffin-embedded tissue samples is a well-established method for preserving tissue and is routinely used in clinical settings. Although formalin-fixed, paraffin-embedded (FFPE) tissues are deemed crucial for research and clinical applications, the fixation process results in molecular damage to nucleic acids, thus confounding their use in genome sequence analysis. Methods to improve genomic data quality from FFPE tissues have emerged, but there remains significant room for improvement. Here, we use whole-genome sequencing (WGS) data from matched Fresh Frozen (FF) and FFPE tissue samples to optimize a sensitive and precise FFPE single nucleotide variant (SNV) calling approach. We present methods to reduce the prevalence of false-positive SNVs by applying combinatorial techniques to five publicly available variant callers. We also introduce FFPolish, a novel variant classification method that efficiently classifies FFPE-specific false-positive variants. Our combinatorial and statistical techniques improve precision and F1 scores compared to the results of publicly available tools when tested individually.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...