Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 330: 121717, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37149249

RESUMO

In this study, an autogenous N-doped biochar derived from Chlorella (CVAC) was prepared with NaOH as activator at 800 °C. The surface structural properties of CVAC and the adsorption performance of CVAC on tetracycline (TC) under different adsorption variables were analyzed and investigated using different characterization methods. The results showed that the specific surface area of CVAC was 491.16 m2 g-1 and the adsorption process was in accordance with Freundlich model and pseudo-second-order kinetic model. The maximum adsorption capacity of TC was 310.696 mg g-1 at pH 9 and 50 °C, and it was mainly physical adsorption. Furthermore, the cyclic adsorption-desorption behavior of CVAC using ethanol as eluent was evaluated and the feasibility of its long-term application was explored. CVAC also showed good cyclic performance. The variation of ΔG° and ΔH° confirmed that the adsorption of TC by CVAC was a spontaneous heat absorption process.


Assuntos
Chlorella , Poluentes Químicos da Água , Adsorção , Porosidade , Tetraciclina/química , Antibacterianos , Carvão Vegetal/química , Cinética
2.
Sci Total Environ ; 860: 160541, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36464061

RESUMO

The effects of biochemical components and processing variables (e.g., temperatures, solid-liquid ratio, ethanol concentration, and time) during fast hydrothermal liquefaction of a highly CO2-tolerant microalgae (Micractinium sp.) on the product yields and biofuel quality were explored using response surface methodology coupled with central composite design. Results showed that the maximum bio-oil yield (51.4 %) was obtained at 321 °C for 49 min at ethanol concentration of 75 % and solid-liquid ratio of 15.3 %. Among different studied parameters, ethanol concentration showed the highest significant impact on the bio-oil yield due to the low P-value and high F-value in ANOVA analysis. Furthermore, the chemical compositions of bio-oils were determined, which showed that the increase of ethanol concentration in the solvent not only increased the bio-oil yield but also promoted the bio-oil quality by reduction of carboxylic acids and nitrogen-containing compounds with simultaneous enhancement of esters in the bio-oil. The present results show that fast hydrothermal liquefaction is a promising approach to convert the microalgae into high quality biofuels rich in esters.


Assuntos
Biocombustíveis , Microalgas , Dióxido de Carbono , Água/química , Óleos de Plantas , Temperatura , Etanol , Compostos de Nitrogênio , Biomassa
3.
Environ Sci Pollut Res Int ; 29(45): 68724-68734, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35554807

RESUMO

In this study, the efficiency of activated carbon (AC) synthesized from the shrimp shell plus cellulose (SS@C) was optimized toward Bisphenol A (BPA) adsorption. Low-cost, renewable, and non-toxic shrimp shells mixed with cellulose were carbonized, followed by activation via CO2 and NaHCO3 to produce SS@C-AC. The results revealed that SS@C-AC samples were a porous composite with mesoporous structures comprising a relatively high specific surface area (935.20 m2/g) with a mean pore size of around 3.8 nm and mesoporous volume of 1.83E-02 cm3/g. The influences of initial concentrations, pH values, and adsorption on BPA were investigated systematically. Isotherm model and kinetics study of the adsorption of BPA on SS@C-AC exhibited that the obtained data were in agreement with the Langmuir adsorption isotherm model while there is no difference between PFO and PSO kinetic results for BPA concentrations in the range 25-100 mg/L. The impregnation ratio of 1.5 NaHCO3 and an activation time of 90 min at 800°C were the optimum conditions under which BPA removal of 81.78% was obtained.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Compostos Benzidrílicos , Dióxido de Carbono , Celulose , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Cinética , Fenóis , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 425: 127887, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34906868

RESUMO

Activated carbon (ENAC) was prepared by NaOH activation, using macroalgae (Enteromorpha clathrate) as raw material. The prepared activated carbon has a large surface area (1238.491 m2 g-1) and its total pore volume and average pore size are 0.6823 cm3g-1 and 2.2038 nm, respectively. The ENAC was characterized by SEM, FTIR, BET and XPS. The effects of contact time (0-960 min), initial tetracycline (TC) concentration (50-500 mg L-1), temperature (30-50 °C) and initial pH (2-11) on TC adsorption were evaluated. The adsorption isotherm and adsorption kinetics were discussed. Results showed that the adsorption isotherm was the Langmuir model, and the adsorption process can be described by the pseudo-second-order model. The N2 adsorption-desorption isotherm was type IV, indicating that the activated carbon had mesoporous structure. Thermodynamic analysis showed that the adsorption process was endothermic and spontaneous. The maximum adsorption capacity of TC was 381.584 mg g-1. Density functional theory (DFT) was used to simulate and analyze the adsorption process, and the influence of different types of N on the adsorption was expounded. The results showed that there are electrostatic interactions, π-π interactions and hydrogen bonding between the adsorbent and TC. These results indicated that the prepared ENAC had a great application prospect in the removal of antibiotics from aqueous solution.


Assuntos
Alga Marinha , Poluentes Químicos da Água , Adsorção , Antibacterianos , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Hidróxido de Sódio , Tetraciclina , Termodinâmica
5.
J Agric Food Chem ; 64(6): 1223-30, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26805521

RESUMO

In the present paper, two irrigation treatments were applied to olive trees cv. Chemlali: irrigation with treated wastewater (TWW) and with olive mill wastewater (OMW), which was spread at three levels (50, 100, and 200 m(3)/ha). This work is interested in two topics: (1) the influence of different irrigation treatments on olive oil composition and quality and (2) the comparison between OMW and TWW application using different statistical analyses. The obtained variance analysis (ANOVA) has confirmed that there are no significant differences in oil quality indices and flavonoids between the control and treatments amended by OMW or TWW (p > 0.05). However, the irrigation affected some aspects of olive oil composition such as the reduction in palmitic acid (16.32%) and increase in linoleic acid (19.55%). Furthermore, the total phenols and α-tocopherol contents increased significantly following OMW and TWW treatments. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) defined three irrigation groups: OMW 50 and 100 m(3)/ha, OMW 200 m(3)/ha and control, and TWW treatment. The full factorial design revealed that OMW amendment by 100 m(3)/ha is the best irrigation treatment. Thus, the optimal performances in terms of olive oil quality and composition were shown by olive oil extracted from olives grown under irrigation with 100 m(3)/ha of OMW.


Assuntos
Olea/crescimento & desenvolvimento , Azeite de Oliva/química , Resíduos/análise , Águas Residuárias/análise , Irrigação Agrícola , Olea/química , Olea/metabolismo , Água/análise , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...