Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 36: 98-105, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25465511

RESUMO

In recent years, several waste-to-energy plants in Italy have experienced an increase of the concentration of acid gases (HCl, SO2 and HF) in the raw gas. This is likely an indirect effect of the progressive decrease of the amount of treated municipal waste, which is partially replaced by commercial waste. The latter is characterised by a higher variability of its chemical composition because of the different origins, with possible increase of the load of halogen elements such as chlorine (Cl) and fluorine (F), as well as of sulphur (S). A new dolomitic sorbent was then tested in four waste-to-energy plants during standard operation as a pre-cleaning stage, to be directly injected at high temperature in the combustion chamber. For a sorbent injection of about 6 kg per tonne of waste, the decrease of acid gases concentration downstream the boiler was in the range of 7-37% (mean 23%) for HCl, 34-95% (mean 71%) for SO2 and 39-80% (mean 63%) for HF. This pre-abatement of acid gases allowed to decrease the feeding rate of the traditional low temperature sorbent (sodium bicarbonate in all four plants) by about 30%. Furthermore, it was observed by the plant operators that the sorbent helps to keep the boiler surfaces cleaner, with a possible reduction of the fouling phenomena and a consequent increase of the specific energy production. A preliminary quantitative estimate was carried out in one of the four plants.


Assuntos
Poluentes Atmosféricos/química , Carbonato de Cálcio/química , Gases/química , Incineração , Magnésio/química , Absorção Fisico-Química , Ácido Clorídrico/química , Ácido Fluorídrico/química , Dióxido de Enxofre/química
2.
Waste Manag ; 35: 127-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25465510

RESUMO

The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO2 emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in Biganzoli et al. (2014) and from the dolomitic sorbent production plant. The results of the LCA show minor changes in the potential impacts between the two operational modes of the plants. These differences are for 8 impact categories in favour of the new operational mode based on the addition of the dolomitic sorbent, and for 7 impact categories in favour of the traditional operation. A final evaluation was conducted on the potential role of the dolomitic sorbent in enhancing the electric energy production efficiency of the plant, thanks to the better cleaning of the heat exchange surface that can be achieved. If such improvement is accounted for, all the potential impacts are considerably decreased (e.g. the Climate change by 28%), and in the comparison with the traditional operation 17 impact categories out of 19 are reduced.


Assuntos
Meio Ambiente , Incineração/métodos , Carbonato de Cálcio , Dióxido de Carbono/análise , Gases , Magnésio , Bicarbonato de Sódio , Temperatura
3.
Chemosphere ; 77(9): 1224-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19815252

RESUMO

The stack gases of a municipal solid waste incinerator (MSWI), and ambient air were sampled in four locations around the plant for the analysis of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs). The sampling area was close to an industrial area near Trieste, in north-east Italy. The purpose of the study was to estimate the impact of the MSWI emissions and to distinguish the contribution of these emissions from other potential emission sources in the industrial area. PCDD/F atmospheric concentrations were similar to those generally detected in urban-rural areas with one location about 2-3 times more contaminated than the others. Since the most contaminated location was inside the industrial area but upwind of the MSWI, principal component analysis (PCA) was used to establish whether other sources were the cause. This analysis clearly showed that a local steel plant's emission was the main source of PCDDs/Fs in ambient air. This study highlights the usefulness of multivariate data analysis such as PCA to identify, among different potential emission sources, the one really responsible for the contamination.


Assuntos
Poluentes Atmosféricos/análise , Benzofuranos/análise , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzofuranos Policlorados , Incineração , Itália , Dibenzodioxinas Policloradas/análise , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...