Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 14(1): 103-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37555906

RESUMO

This study aims to investigate the effect of the preparation of solid dispersions using supercritical CO2 (scCO2) on the physicochemical properties and the performance of supramolecular gels based on polymer-cyclodextrin (CD) interactions (named poly(pseudo)rotaxanes, PPR) envisaging a transdermal administration. Solid dispersions containing Soluplus®, the antihypertensive drug carvedilol (CAR), and CD (αCD or HPßCD) were prepared and characterized by HPLC, XRPD, FTIR, and DSC. PPRs prepared from solid dispersions (SCF gels) and the corresponding physical mixtures (PM gels) were analyzed regarding rheology, morphology, in vitro drug diffusion, and ex vivo drug skin permeation. The application of scCO2 led to the loss of the crystalline lattice of CAR while preserving its chemical identity. On the contrary, αCD crystals were still present in the SCF solid dispersions. SCF gels were more uniform than their corresponding PM, and the supercritical treatment resulted in changes in the rheological behavior, reducing the viscosity. CAR in vitro diffusion was significantly higher (p < 0.05) for the αCD-based SCF gel than its corresponding PM gel. Drug skin permeation showed a significant increase in drug flux from CD-based SCF gels (containing αCD or HPßCD) compared to corresponding PM gels. Additionally, the pretreatment of the skin with αCD exhibited increased CAR permeation, suggesting an interaction between αCD and the skin membrane. Results evidenced that SCF processing decisively modified the properties of the supramolecular gels, particularly those prepared with αCD.


Assuntos
Ciclodextrinas , Rotaxanos , Ciclodextrinas/química , Rotaxanos/química , Administração Cutânea , 2-Hidroxipropil-beta-Ciclodextrina , Carvedilol , Géis/química
2.
AAPS PharmSciTech ; 24(6): 156, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37468721

RESUMO

This study sought to develop polymer-lipid hybrid solid dispersions containing the poorly soluble drug lopinavir (LPV) by hot-melt extrusion (HME). Hence, the lipid and polymeric adjuvants were selected based on miscibility and compatibility studies. Film casting was used to assess the miscibility, whereas thermal, spectroscopic, and chromatographic analyses were employed to evaluate drug-excipient compatibility. Extrudates were obtained and characterized by physicochemical tests, including in vitro LPV dissolution. Preformulation studies led to select the most appropriate materials, i.e., the polymers PVPVA and Soluplus®, the plasticizers polyethylene glycol 400 and Kolliphor® HS15, phosphatidylcholine, and sodium taurodeoxycholate. HME processing did not result in LPV degradation and significantly increased entrapment efficiency (93.8% ± 2.8 for Soluplus® extrudate against 19.8% ± 0.5 of the respective physical mixture). LPV dissolution was also increased from the extrudates compared to the corresponding physical mixtures (p < 0.05). The dissolution improvement was considerably greater for the Soluplus®-based formulation (24.3 and 2.8-fold higher than pure LPV and PVPVA-based extrudate after 120 min, respectively), which can be attributed to the more pronounced effects of HME processing on the average size and LPV solid-state properties in the Soluplus® extrudates. Transmission electron microscopy and chemical microanalysis suggested that the polymer-lipid interactions in Soluplus®-based formulation depended on thermal processing.


Assuntos
Polietilenoglicóis , Polímeros , Polímeros/química , Composição de Medicamentos/métodos , Solubilidade , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Lipídeos , Temperatura Alta
3.
Appl Microbiol Biotechnol ; 107(7-8): 2263-2275, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36929189

RESUMO

The cattle tick, Rhipicephalus microplus (Acari: Ixodidae), is a multi-billion dollar ectoparasite of global importance affecting beef and milk production. Submerged cultures of cosmopolitan entomopathogenic fungal species of the genus Metarhizium typically produce microsclerotia that provide both long-term survival and environmental resistance. Microsclerotia hold great potential as an unconventional active propagule to control this tick under laboratory and semi-field conditions. However, heat stress caused especially by elevated temperatures poses a critical environmental constraint for the successful development and efficacy of microsclerotia under tropical conditions. First, we screened six strains of Metarhizium anisopliae, Metarhizium robertsii and Metarhizium humberi for their ability to produce microsclerotia by submerged liquid cultivation. In addition, we assessed the biological fitness and bioefficacy of dried microsclerotial pellets under amenable (27 °C) and heat-stressed (32 °C) incubation against engorged adult females of R. microplus. Microsclerotia in pelletized formulation prepared with carriers based on diatomaceous earth and microcrystalline cellulose exhibited conidial production at different extents according to the fungal strain and the incubation temperature, but most strains displayed reduced sporogenesis when exposed to 32 °C. Engorged tick females exposed to sporulated microsclerotia from pelletized M. anisopliae CG47 or IP 119 had fewer number of hatching larvae in comparison to the control group, irrespective of the incubation temperature tested. The minimum dosage of microsclerotial pellets that effectively reduced hatchability of tick larvae was estimated to be 2 mg per plate (equivalent to 6.0 kg per hectare). Metarhizium microsclerotial pellets exhibited significant tolerance to 32 °C and pronounced acaricidal activity against this economically important ectoparasite of cattle, even under simulated environmental heat stress. KEY POINTS: • Heat stress affects conidial production by microsclerotia of most pelletized Metarhizium strains • Heat stress does not impair the acaricidal performance of pelletized microsclerotia • Pellet formulation of Metarhizium microsclerotia is a promising mycoacaricide.


Assuntos
Metarhizium , Rhipicephalus , Termotolerância , Animais , Feminino , Controle Biológico de Vetores , Rhipicephalus/microbiologia , Larva/microbiologia , Esporos Fúngicos
4.
Drug Deliv Transl Res ; 13(4): 1140-1152, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36564661

RESUMO

This study aimed to investigate whether hot-melt extrusion (HME) processing can promote molecular encapsulation of a multi-component natural product composed of volatile and pungent hydrophobic substances (ginger oleoresin (OR)) with cyclodextrins. 6-Gingerol and 6-shogaol, the biomarkers of ginger OR, were quantified by HPLC. Phase-solubility studies were performed using ß-cyclodextrin (ßCD) and hydroxypropyl-ß-cyclodextrin (HPßCD) for ginger OR complexation. Solid complexes were then prepared by thermal (HME)- and solvent (slurry (SL))-based methods. Morphology, thermal behavior, solubility, in vitro dissolution, and in vivo anti-inflammatory activity were evaluated. HPßCD gave rise to AL-type complexes with ginger OR, whereas ßCD led to materials with limited solubility. Ginger OR was complexed with HPßCD by HME without significant change in gingerol and shogaol content. Additionally, thermogravimetric analysis (TGA) suggested higher volatile retention in HME complexes than in SL ones. Shogaol and gingerol solubility and dissolution significantly increased from SL and HME complexes compared with ginger OR. In turn, 1:2 OR/HPßCD HME complex showed higher 6-shogaol solubility than SL, associated with a gradual release. The carrageenan-induced pleurisy test showed that the anti-inflammatory activity of ginger OR was maintained after complexation with HPßCD. The complexes significantly decrease the levels of IL-1ß and inhibit cell migration. HME complex showed performance equivalent to the positive control and superior to the SL material. Taken together, these results indicate that HME can be useful for promoting the molecular encapsulation of complex natural products that contain volatile and thermolabile substances. HME complexes showed better in vivo and in vitro performance than complexes prepared using the solvent-based method.


Assuntos
Ciclodextrinas , Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Catecóis , Solubilidade
5.
Int J Pharm ; 627: 122240, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36179928

RESUMO

Aesthetic perforations are often associated with health issues, such as itching, inflammation, or microbial infection. Accordingly, this work proposed a lacquer to be applied on the adornment accessory forming a film from which a proper drug is released. For this, lacquers were formulated containing three different permeation enhancers (limonene - LIM, propylene glycol - PG, and oleic acid - AO) combined according to a mixture design with a model anti-inflammatory natural drug (naringenin) and a soluble film-former polymer (polyvinyl alcohol). Formulations were characterized by physicochemical tests and in vitro and in vivo skin permeation studies. The lacquers were stable and provided a vectorized drug release. LIM, combined with one of the other permeation enhancers, showed a synergic effect, enhancing topical skin penetration in vitro by 53% while preventing permeation to the receptor medium. The in vivo evaluation of lacquers in rodent models showed these systems could provide higher levels of drug retention in the ear (166.4 ± 14.9 µg per ear for F4 and 174.9 ± 29.3 µg per ear for F5) compared to the control (109.2 ± 16.3 µg) without allowing its permeation into the bloodstream, confirming the local drug delivery. Moreover, the anti-inflammatory activity was achieved in the animal model developed for lacquer application on the earring, obtaining inhibition of ear swelling up to 40.8% ± 2.3 compared to the untreated ear. Thus, such an innovative lacquer proved a promising vehicle for treating affections caused by adornments, enhancing skin permeation while avoiding a systemic effect.


Assuntos
Laca , Ácido Oleico , Animais , Limoneno , Álcool de Polivinil/farmacologia , Pele , Propilenoglicol/química , Estética , Administração Cutânea
6.
Int J Pharm X ; 4: 100118, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35602759

RESUMO

This work aimed to develop water-based formulations for onychomycosis topical treatment using micelles of small pegylated surfactants associated with α-cyclodextrin (αCD) to deliver terbinafine to the nail. Kolliphor® RH40 (RH40) and Gelucire® 48/16 (GEL) single and mixed micelles (RH40:GEL 1:1) were prepared. αCD was added to the surfactants dispersions to form poly(pseudo)rotaxanes (PPR). Formulations were characterized in terms of drug solubilization (3 to 34-fold increase), particle size (9-11 nm) and Z-potential (+0.3 - +1.96 mV), blood compatibility (non-hemolytic), rheological behavior (solid-like viscoelastic properties after 5-10% αCD addition), drug release and interaction with the nail plate. GEL micelles and surfactant-10% αCD PPRs notably hydrated the nail plate. The high viscosity of PPR led to a slower drug release, except for RH40:GEL +10% αCD that surprisingly released terbinafine faster. The RH40:GEL +10% αCD formulation delivered twice more amount of terbinafine to deeper regions of nail plate compared to other formulations. The results evidenced the potential of PPR formed by small pegylated surfactants as a water-based formulation for nail drug delivery.

7.
Eur J Pharm Sci ; 168: 106048, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699938

RESUMO

Nanostructured lipid carriers (NLC)-loaded with lopinavir (LPV) were developed for its iontophoretic transdermal delivery. Electronic paramagnetic resonance (EPR) spectroscopy of fatty acid spin labels and differential scanning calorimetry (DSC) were applied to investigate the lipid dynamic behavior of NLC before and after the electrical current. In vitro release and permeation studies, with and without anodic and cathodic iontophoresis were also performed. NLC-LPV had nanometric size (179.0 ± 2.5 nm), high drug load (∼x223C 4.14%) and entrapment efficiency (EE) (∼x223C 80%). NLC-LPV was chemically and physically stable after applying an electric current. The electrical current reduced EE after 3 h (67.21 ± 2.64%), resulting in faster LPV in vitro release. EPR demonstrated that iontophoresis decreased NLC lipid dynamics, which is a long-lasting effect. DSC studies demonstrated that electrical current could trigger the polymorphic transition of NLC and drug solubilization in the lipid matrix. NLC-LPV, combined with iontophoresis, allowed drug quantification in the receptor medium, unlike unloaded drugs. Cathodic iontophoresis enabled the quantification of about 7.9 µg/cm2 of LPV in the receptor medium. Passive NLC-LPV studies had to be done for an additional 42 h to achieve similar concentrations. Besides, anodic iontophoresis increased by 1.8-fold the amount of LPV in the receptor medium, demonstrating a promising antiviral therapy strategy.


Assuntos
Nanopartículas , Nanoestruturas , Portadores de Fármacos , Iontoforese , Lipídeos , Lipossomos , Lopinavir , Tamanho da Partícula , Absorção Cutânea
8.
J Pharm Pharmacol ; 74(10): 1391-1405, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665263

RESUMO

OBJECTIVES: Three-dimensional printing (3DP) has opened the era of drug personalization, promising to revolutionize the pharmaceutical field with improvements in efficacy, safety and compliance of the treatments. As a result of these investigations, a vast therapeutic field has opened for 3DP-loaded drug devices with an anatomical fit. Along these lines, innovative dosage forms, unimaginable until recently, can be obtained. This review explores 3DP-engineered drug devices described in recent research articles, as well as in patented inventions, and even devices already produced by 3DP with drug-loading potential. KEY FINDINGS: 3D drug-loaded stents, implants and prostheses are reviewed, along with devices produced to fit hard-to-attach body parts such as nasal masks, vaginal rings or mouthguards. The most promising 3DP techniques for such devices and the complementary technologies surrounding these inventions are also discussed, particularly the scanners useful for mapping body parts. Health regulatory concerns regarding the new use of such technology are also analysed. SUMMARY: The scenario discussed in this review shows that for wearable 3DP drug devices to become a tangible reality to users, it will be necessary to overcome the existing regulatory barriers, create new interfaces with electronic systems and improve the mapping mechanisms of body surfaces.


Assuntos
Sistemas de Liberação de Medicamentos , Impressão Tridimensional , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas
9.
Planta Med ; 88(6): 479-488, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33862644

RESUMO

Punicalagin, the principal ellagitannin of Lafoensia pacari leaves, has proven antioxidant activity, and standardized extracts of L. pacari can be topically used for skin aging management. We hypothesized that Pluronic nanomicelles or vesicles could solubilize sufficiently large amounts of the standardized extracts of L. pacari and provide chemical stability to punicalagin. The standardized extracts of L. pacari were obtained with an optimized extraction procedure, and the antioxidant activity was characterized. Formulations containing Pluronic at 25% and 35% were obtained with or without Span 80. They were characterized by average diameter, polydispersity index, punicalagin content, physicochemical stability, and rheology. A release and skin permeation study was carried out in vertical diffusion cells. The extraction procedure allowed quantifying high punicalagin content (i.e., 141.61 ± 3.87 mg/g). The standardized extracts of L. pacari showed antioxidant activity for all evaluated methods. Pluronic at 25 and Pluronic at 35 with standardized extracts of L. pacari showed an average diameter of about 25 nm. The addition of Span 80 significantly increased the mean diameter by 15-fold (p < 0.05), indicating the spontaneous formation of vesicles. Pluronic formulations significantly protected punicalagin from chemical degradation (p < 0.05). Pluronic at 25 formulations presented as free-flowing liquid-like systems, while Pluronic at 35 resulted in an increase of about 44-fold in |ƞ*|. The addition of Span 80 significantly reduced the Pluronic sol-gel transition temperature (p < 0.05), indicating the formation of vesicles. Formulations with Span 80 significantly enhanced punicalagin skin permeation compared to formulations without Span 80 (p < 0.05). Formulations with Span 80 were demonstrated to be the most promising formulations, as they allowed significant permeation of punicalagin (about 80 to 315 µg/cm2), which has been shown to have antioxidant activity.


Assuntos
Taninos Hidrolisáveis , Lythraceae , Antioxidantes/farmacologia , Lythraceae/química , Micelas , Extratos Vegetais/farmacologia , Poloxâmero
10.
AAPS PharmSciTech ; 22(8): 263, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34729662

RESUMO

Fused deposition modeling (FDM) 3D printing has demonstrated high potential for the production of personalized medicines. However, the heating at high temperatures inherent to this process causes unknown risks to the drug product's stability. The present study aimed to assess the use of a tailored preformulation protocol involving physicochemical assessments, including the rheological profiles of the samples, to guide the development of medicines by FDM 3D printing. For this, polymers commonly used in FDM printing, i.e., high impact polystyrene (HIPS), polylactic acid (PLA), and polyvinyl alcohol (PVA), and their common plasticizers (mineral oil, triethyl citrate, and glycerol, respectively) were evaluated using the thermolabile model drug isoniazid (INH). Samples were analyzed by chemical and physical assays. The results showed that although the drug could produce polymorphs under thermal processing, the polymeric matrix can be a protective element, and no polymorphic transformation was observed. However, incompatibilities between materials might impact their chemical, thermal, and rheological performances. In fact, ternary mixtures of INH, PLA, and TEC showed a major alteration in their viscoelastic behavior besides the chemical changes. On the other hand, the use of plasticizers for HIPS and PVA exhibited positive consequences in drug solubility and rheologic behavior, probably improving sample printability. Thus, the optimization of the FDM 3D printing based on preformulation studies can assist the choice of compatible components and seek suitable processing conditions to obtain pharmaceutical products.


Assuntos
Excipientes , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Impressão Tridimensional , Solubilidade
11.
AAPS PharmSciTech ; 22(8): 254, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34668093

RESUMO

This study sought to investigate the influence of formulation and process factors of the high shear mixing (HSM) on the properties of solid self-emulsifying drug delivery systems (S-SEDDS) containing the model drug carvedilol (CAR). Firstly, liquid SEDDS (L-SEDDS) were prepared by mixing castor oil with different proportions of surfactant (Solutol or Kolliphor RH40) and cosolvent (Transcutol or PEG400). A miscible L-SEDDS with high drug solubility (124.3 mg/g) was selected and gave rise to 10% (m/m) CAR loaded-emulsion with reduced particle size. Then, a factorial experimental design involving five component's concentration and two process factors was used to study the solidification of the selected L-SEDDS by HSM. CAR content, diffractometric profile, and in vitro dissolution were determined. Morphological and flow analyses were also performed. Porous and spherical particles with mean sizes ranging from 160 to 210 µm were obtained. Particle size was not affected by any formulation factor studied. Powder flowability, in turn, was influenced by L-SEDDS and crospovidone concentration. CAR in vitro dissolution from S-SEDDS was significantly increased compared to the drug as supplied and was equal (pH 1.2) or lower (pH 6.8) than that determined for L-SEDDS. Colloidal silicon dioxide decreased drug dissolution, whereas an increase in water-soluble diluent lactose and L-SEDDS concentration increased CAR dissolution. The proper selection of liquid and solid constituents proved to be crucial to developing an S-SEDDS by HSM. Indeed, the results obtained here using experimental design contribute to the production of S-SEDDS using an industrially viable process.


Assuntos
Sistemas de Liberação de Medicamentos , Excipientes , Liberação Controlada de Fármacos , Emulsões , Solubilidade
12.
Head Neck ; 43(12): 3922-3934, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655135

RESUMO

BACKGROUND: Oral mucositis (OM) is the significant complication of radio/chemotherapy treatment. This study evaluated the safety and efficacy of a mucoadhesive phytomedication containing curcuminoids and Bidens pilosa L. (FITOPROT) in the prevention/treatment of OM. METHODS: Sixty-two patients were randomized into the group's intervention and placebo. Adverse effect assessment, OM grading, pain, and saliva collection were carried at the 1st, 15th, 21st, and final of radiotherapy (RT). Inflammatory salivary mediators were measured. RESULTS: FITOPROT decreased the severity of OM from the 15th to the final RT, while the placebo showed an increase in the severity (p < 0.05). Intervention group had a lower number of patients with ulcerated OM at the final RT (p < 0.05). Phytomedication prevented increases of IL-8 levels and reduced the salivary nitrite during RT. CONCLUSIONS: FITOPROT does not promote adverse effects, it appears to be effective at reducing the severity of OM, and it controls the concentration of pro-inflammatory mediators.


Assuntos
Bidens , Neoplasias de Cabeça e Pescoço , Estomatite , Quimiorradioterapia , Diarileptanoides/uso terapêutico , Método Duplo-Cego , Humanos , Estomatite/etiologia , Estomatite/prevenção & controle
13.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576044

RESUMO

α,ß-amyrenone (ABAME) is a triterpene derivative with many biological activities; however, its potential pharmacological use is hindered by its low solubility in water. In this context, the present work aimed to develop inclusion complexes (ICs) of ABAME with γ- and ß-cyclodextrins (CD), which were systematically characterized through molecular modeling studies as well as FTIR, XRD, DSC, TGA, and SEM analyses. In vitro analyses of lipase activity were performed to evaluate possible anti-obesity properties. Molecular modeling studies indicated that the CD:ABAME ICs prepared at a 2:1 molar ratio would be more stable to the complexation process than those prepared at a 1:1 molar ratio. The physicochemical characterization showed strong evidence that corroborates with the in silico results, and the formation of ICs with CD was capable of inducing changes in ABAME physicochemical properties. ICs was shown to be a stronger inhibitor of lipase activity than Orlistat and to potentiate the inhibitory effects of ABAME on porcine pancreatic enzymes. In conclusion, a new pharmaceutical preparation with potentially improved physicochemical characteristics and inhibitory activity toward lipases was developed in this study, which could prove to be a promising ingredient for future formulations.


Assuntos
Inibidores Enzimáticos/farmacologia , Lipase/antagonistas & inibidores , Triterpenos/farmacologia , beta-Ciclodextrinas/farmacologia , Animais , Varredura Diferencial de Calorimetria , Simulação por Computador , Inibidores Enzimáticos/química , Lipase/química , Orlistate/farmacologia , Solubilidade/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos , Triterpenos/síntese química , Triterpenos/química , Difração de Raios X , beta-Ciclodextrinas/química
14.
Braz J Microbiol ; 52(4): 2247-2256, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34363592

RESUMO

There is great interest for biopreservation of food products, and encapsulation may be a good strategy to extend the viability of protective cultures. In this study, Lactobacillus paraplantarum FT-259 and Lactococcus lactis QMF 11 were separately encapsulated in casein/pectin (C/P) microparticles, which were tested for antilisterial and anti-staphylococcal activity in fresh Minas cheese (FMC) stored at 8 °C. The encapsulation efficiency for both lactic acid bacteria (LAB) was 82.5%, with viability over 6.2 log CFU/g after storage of C/P microparticles for 90 days under refrigeration. Interestingly, free Lb. paraplantarum and free Lc. lactis grew significantly in refrigerated FMC, both in the presence and absence of pathogens, but only the first significatively grew when encapsulated. Encapsulation increased the antilisterial activity of Lb. paraplantarum in FMC. Moreover, Lc. lactis significantly inhibited listerial growth in FMC in both its free and encapsulated forms, whereas Staphylococcus aureus counts were only significantly reduced in the presence of free Lc. lactis. In conclusion, these results indicate that C/P microparticles are effective carriers of LAB in FMC, which can contribute for the assurance of the safety of this product.


Assuntos
Queijo , Microbiologia de Alimentos , Lactobacillales , Lactococcus lactis , Queijo/microbiologia , Microbiologia de Alimentos/métodos , Lactobacillales/fisiologia , Lactobacillus/fisiologia , Lactococcus lactis/fisiologia , Refrigeração , Staphylococcus aureus
15.
Vet Parasitol ; 296: 109501, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34147769

RESUMO

The present study aimed to develop a microemulsion formulation containing thymol and eugenol for field control of Rhipicephalus sanguineus sensu lato on dogs, as well to evaluate its safety and the physical characteristics of the formulation. The microemulsion using thymol and eugenol (5.0 + 5.0 mg/mL) had as vehicles water, propylene glycol, polysorbate 80 and canola oil. On the next day the preparation (formulation freshly prepared) and after 24 months, the size of the microemulsion droplets, polydispersion index (PdI), organoleptic properties (color, viscosity), and presence of precipitate in the microemulsion were evaluated. For the field assay, on day -1, 10 English Cocker Spaniel dogs were experimentally infested with 200 larvae, 100 nymphs and 30 adults of R. sanguineus s.l. On day 0, after tick counts, the animals were divided into two groups: treated with the freshly prepared microemulsion (10 mL/kg), and control, which received the vehicle (10 mL/kg). Tick counts on dogs were performed daily for three more days. Engorged females were recovered from the dogs and their biological and reproductive parameters were monitored. The dogs' clinical parameters (temperature, mucosa color, and general physical condition) were evaluated daily. In addition, blood samples were collected before infestation to verify hematological (packed cell volume) and biochemical parameters (total serum protein, albumin, globulins, creatinine, urea, alanine transaminase, aspartate aminotransferase, and alkaline phosphatase). Freshly prepared and 24-month aged microemulsions had droplets with mean sizes of 30.94 nm and 27.93 nm, and PdI values of 0.214 and 0.161, respectively. In addition, no difference in the organoleptic properties and no precipitation formation were observed, indicating physical stability. Treatment with the microemulsion resulted in reduction of larvae (p < 0.05) parasitizing the dogs on day 1 while the number of nymphs and adults was not reduced (P> 0.05). In the evaluation of the reproductive biology of engorged females, the larval hatchability (%) was compromised (p < 0.05), and the microemulsion had control rate of 85.5 %. The microemulsion and its vehicles did not change the clinical, hematological and biochemical parameters of the dogs. We concluded that the microemulsion was efficient against R. sanguineus s.l. by reducing the number of larvae and affecting the reproductive parameters of engorged females, safe for dogs, and stable (physical stability) during a two-year interval.


Assuntos
Doenças do Cão , Emulsões , Rhipicephalus sanguineus , Infestações por Carrapato , Animais , Doenças do Cão/tratamento farmacológico , Doenças do Cão/prevenção & controle , Cães , Emulsões/farmacologia , Emulsões/normas , Eugenol/farmacologia , Eugenol/uso terapêutico , Feminino , Larva , Ninfa , Rhipicephalus sanguineus/efeitos dos fármacos , Segurança , Timol/farmacologia , Timol/uso terapêutico , Infestações por Carrapato/tratamento farmacológico , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária
16.
Braz Oral Res ; 35: e063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076188

RESUMO

FITOPROT, which contains curcuminoids and Bidens pilosa L. extract, is an innovative mucoadhesive formulation indicated for the topical treatment of chemoradiotherapy-induced oral mucositis (OM) in patients with advanced and visible oral squamous cell carcinoma. The formulation is used as a mouthwash directly on tumor tissue of patients with advanced neoplasms, without triggering cancer cell proliferation or tumor invasiveness. Thus, the aim of this study was to evaluate the biological effects of FITOPROT on an oral squamous cell carcinoma cell line (SCC-4). The viability of SCC-4 cells was assessed after exposure to FITOPROT using MTT reduction assay. The effects of the mucoadhesive formulation on cell cycle progression and cell death parameters were evaluated using flow cytometry. In addition, the inflammatory profile of the tumor cells was evaluated using the cytometric bead array (CBA) assay. FITOPROT promoted a concentration-dependent decrease in cell viability and cell cycle arrest at the G2/M phase (p < 0.05). Mitochondrial membrane potential was also altered after exposure to the formulation (p < 0.05), in parallel with a reduction in VEGF and IL-8 production (p = 0.01 and p = 0.05, respectively). In summary, the results indicate that FITOPROT reduces SCC-4 cell viability, promotes cell cycle arrest, modulates mitochondrial membrane potential, and exhibits antiangiogenic and anti-inflammatory properties, thus indicating its potential for topical use in patients with OM and visible tumors in the mouth.


Assuntos
Bidens , Carcinoma de Células Escamosas , Neoplasias Bucais , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular , Proliferação de Células , Diarileptanoides , Humanos , Neoplasias Bucais/tratamento farmacológico
17.
Appl Microbiol Biotechnol ; 105(12): 5001-5012, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34100979

RESUMO

This study was sought to devise pellets containing inorganic materials and microsclerotia of Metarhizium anisopliae strain IP 119 for biological control of Rhipicephalus microplus, the most economically important tick in Brazilian cattle industry. In addition, we evaluated the storage stability of the pellets, their tolerance to ultraviolet radiation (UV-B), and efficacy against ticks under laboratory conditions. Fungal microsclerotia were produced by liquid culture fermentation and mixed with pre-selected inorganic matrices: vermiculite powder, diatomaceous earth, and colloidal silicon dioxide (78:20:2, w/w/w). The microsclerotial pellets were then prepared by a two-stage process involving extrusion and spheronization. Pellet size averaged 525.53 ± 7.74 µm, with a sphericity index of 0.72 ± 0.01, while biomass constituents did not affect the wet mass properties. Conidial production from microsclerotial pellets upon rehydration ranged from 1.85 × 109 to 1.97 × 109 conidia g-1 with conidial viability ≥ 93%. Conidial production from pellets stored at 4 °C was invariable for up to 21 days. Unformulated microsclerotia and microsclerotial pellets were extremely tolerant to UV-B compared with aerial conidia. Engorged tick females exposed to conidia from sporulated pellets applied to soil samples and upon optimal rehydration exhibited shorter oviposition time length, shorter life span, and reduced number of hatched larvae. In summary, microsclerotial pellets of M. anisopliae IP 119 effectively suppressed R. microplus and showed outstanding UV-B tolerance in laboratory tests. Prospectively, this formulation prototype is promising for targeting the non-parasitic stage of this tick on outdoor pasture fields and may offer a novel mycoacaricide for its sustainable management. KEY POINTS: • Pellets with microsclerotia and inorganic materials are innovative for tick control. • Metarhizium microsclerotia show superior UV-B tolerance in relation to conidia. • Pellets of Metarhizium microsclerotia produce infective conidia against ticks.


Assuntos
Metarhizium , Rhipicephalus , Animais , Brasil , Feminino , Controle Biológico de Vetores , Raios Ultravioleta
18.
Appl Microbiol Biotechnol ; 105(7): 2725-2736, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33745009

RESUMO

The impact of ambient relative humidity (RH) on conidial production of Metarhizium humberi IP 46 microsclerotia (MS) formulated in pellets or granules was investigated, and a promising granular formulation was tested against Aedes aegypti adults to confirm its efficacy. Microcrystalline cellulose (MC) and diatomaceous earth (DE) or a combination of vermiculite (VE), DE and silicon dioxide (SD) were tested as carriers in granular formulations containing MS. A range of 93-96.5% RH was critical for fungal development, and at least 96.5-98.5% RH was required for high conidial production on pellets or granules. Conidial production was clearly higher on pellets and granules prepared with VE than MC as the main carrier. VE granules containing MS were highly active against A. aegypti adults. Most mosquitoes were killed within 6 days after treatment regardless of the exposure time of adults to the formulation (1 min-24 h) or ambient humidity (75 or >98%). Production of conidia on dead adults varied between 7.3 × 106 and 2.2 × 107 conidia/individual, when exposed to MS granules for 12 h and 1 min, respectively. Granular formulations containing VE as the main carrier and MS as the active ingredient of M. humberi have strong potential for use against A. aegypti. KEY POINTS: • High conidial production on granular microsclerotial formulations at >96.5% RH • Vermiculite is more appropriate as a carrier than microcrystalline cellulose • Granules with IP 46 microsclerotia are highly active against Aedes aegypti adults.


Assuntos
Aedes , Metarhizium , Animais , Umidade , Larva , Controle Biológico de Vetores
19.
J Microencapsul ; 38(2): 124-133, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33305646

RESUMO

The study aimed to develop lipid nanoparticles using excipients compatible with carvedilol (CARV) for enhanced transdermal drug delivery. Nanostructured lipid carriers (NLC) were successfully obtained and fully characterised. Franz diffusion cells were used for release and in vitro permeation studies in the porcine epidermis (EP) and full-thickness rat skin. NLC4 and NLC5 (0.5 mg/mL of CARV) presented small size (80.58 ± 1.70 and 116.80 ± 12.23 nm, respectively) and entrapment efficiency of 98.14 ± 0.79 and 98.27 ± 0.99%, respectively. CARV-loaded NLC4 and NLC5 controlled drug release. NLC4 allowed CAR permeation through porcine EP in greater amounts than NLC5, i.e. 11.83 ± 4.71 µg/cm2 compared to 3.06 ± 0.79 µg/cm2. NLC4 increased CARV permeation by 2.5-fold compared to the unloaded drug in rat skin studies (13.73 ± 4.12 versus 5.31 ± 1.56 µg/cm2). NLC4 seems to be a promising carrier for the transdermal delivery of CARV.


Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Carvedilol/administração & dosagem , Portadores de Fármacos/química , Lipídeos/química , Administração Cutânea , Antagonistas Adrenérgicos beta/farmacocinética , Animais , Carvedilol/farmacocinética , Nanopartículas/química , Ratos , Ratos Wistar , Pele/metabolismo , Absorção Cutânea , Suínos
20.
Life Sci ; 265: 118742, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33181176

RESUMO

Rheumatoid arthritis is an autoimmune inflammatory disease with progressive degradation of cartilage and joints. Additionally, gastric ulcer affects many patients who make prolonged use of non-steroidal anti-inflammatory drugs widely used in the symptomatic treatment of rheumatoid arthritis. Nerolidol, a natural sesquiterpene, has several biological activities including anti-inflammatory and antiulcerogenic action. This study aims to develop and characterize a nerolidol ß-cyclodextrin inclusion complex and to evaluate its activity in an experimental arthritis model. Inclusion complex was prepared by the lyophilization method and characterized by NMR, term analysis, XRD and SEM. Neutrophil migration assays and histopathological analysis were performed on zymosan-induced arthritis model using Swiss mice. And the gastroprotective effect was evaluated in two models of gastric ulcers: induced by ethanol and indomethacin. Inclusion complex showed no cytotoxicity and free nerolidol at a dose of 100 mg/kg (p.o.) in the arthritis model reduced neutrophil migration in 56% in relation to vehicle, and this inhibition was more expressive in the inclusion complex (67%) at the same dose. Histopathological analysis of the joint tissue confirmed the reduction of inflammatory signs. In the ethanol-induced gastric ulcer model, free nerolidol reduced the relative ulcer area more expressively (4.64%) than the inclusion complex (21.3%). However, in the indomethacin induction model, the inclusion complex showed better results in gastric protection compared to free nerolidol. The action of nerolidol complexed in beta-cyclodextrin in reducing arthritis inflammation combined with its gastroprotective action make it a potential new drug.


Assuntos
Artrite/tratamento farmacológico , Sesquiterpenos/farmacologia , beta-Ciclodextrinas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antiulcerosos/farmacologia , Artrite Experimental/tratamento farmacológico , Linhagem Celular , Mucosa Gástrica/metabolismo , Indometacina/farmacologia , Masculino , Camundongos , Extratos Vegetais/farmacologia , Estômago/patologia , Úlcera Gástrica/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...