Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 17400-17408, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858924

RESUMO

This article presents low-loss mid-infrared waveguides fabricated on a Ge-rich SiGe strain-relaxed buffer grown on an industrial-scale 200 mm wafer, with propagation losses below 0.5 dB/cm for 5-7 µm wavelengths and below 5 dB/cm up to 11 µm. Investigation reveals free-carrier absorption as the primary loss factor for 5-6.5 µm and silicon multiphonon absorption beyond 7 µm wavelength. This result establishes a foundation for a scalable, silicon-compatible mid-infrared platform, enabling the realisation of photonic integrated circuits for various applications in the mid-infrared spectral region, from hazard detection to spectroscopy and military imaging.

2.
Opt Express ; 30(26): 47093-47102, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558646

RESUMO

Spectroscopy in the mid-infrared (mid-IR) wavelength range is a key technique to detect and identify chemical and biological substances. In this context, the development of integrated optics systems paves the way for the realization of compact and cost-effective sensing systems. Among the required devices, an integrated electro-optical modulator (EOM) is a key element for advanced sensing circuits exploiting dual comb spectroscopy. In this paper, we have experimentally demonstrated an integrated EOM operating in a wide wavelength range, i.e. from 5 to 9 µm at radio frequency (RF) as high as 1 GHz. The modulator exploits the variation of free carrier absorption in a Schottky diode embedded in a graded silicon germanium (SiGe) photonic waveguide.

3.
Opt Express ; 30(22): 39860-39867, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298928

RESUMO

Metalenses are attracting a large interest for the implementation of complex optical functionalities in planar and compact devices. However, chromatic and off-axis aberrations remain standing challenges. Here, we experimentally investigate the broadband behavior of metalenses based on quadratic phase profiles. We show that these metalenses do not only guarantee an arbitrarily large field of view but are also inherently tolerant to longitudinal and transverse chromatic aberrations. As such, we demonstrate a single-layer, silicon metalens with a field of view of 86° and a bandwidth up to 140 nm operating at both 1300 nm and 1550 nm telecommunication wavelength bands.

4.
Opt Lett ; 47(4): 810-813, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167531

RESUMO

Integrated mid-infrared micro-spectrometers have a great potential for applications in environmental monitoring and space exploration. Silicon-on-insulator (SOI) is a promising platform to tackle this integration challenge, owing to its unique capability for large volume and low-cost production of ultra-compact photonic circuits. However, the use of SOI in the mid-infrared is restricted by the strong absorption of the buried oxide layer for wavelengths beyond 4 µm. Here, we overcome this limitation by utilizing metamaterial-cladded suspended silicon waveguides to implement a spatial heterodyne Fourier-transform (SHFT) spectrometer operating at wavelengths near 5.5 µm. The metamaterial-cladded geometry allows removal of the buried oxide layer, yielding measured propagation loss below 2 dB/cm at wavelengths between 5.3 and 5.7 µm. The SHFT spectrometer comprises 19 Mach-Zehnder interferometers with a maximum arm length imbalance of 200 µm, achieving a measured spectral resolution of 13 cm-1 and a free spectral range of 100 cm-1 at wavelengths near 5.5 µm.

5.
Nanomaterials (Basel) ; 11(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34835713

RESUMO

Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size, that restrict the available design space or compromise compatibility with high-volume fabrication technologies. Indeed, most successful SWG realizations so far relied on electron-beam lithographic techniques, compromising the scalability of the approach. Here, we report the experimental demonstration of an SWG metamaterial engineered beam splitter fabricated with deep-ultraviolet immersion lithography in a 300-mm silicon-on-insulator technology. The metamaterial beam splitter exhibits high performance over a measured bandwidth exceeding 186 nm centered at 1550 nm. These results open a new route for the development of scalable silicon photonic circuits exploiting flexible metamaterial engineering.

6.
Opt Lett ; 46(16): 4021-4024, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388801

RESUMO

Integrated microspectrometers implemented in silicon photonic chips have gathered a great interest for diverse applications such as biological analysis, environmental monitoring, and remote sensing. These applications often demand high spectral resolution, broad operational bandwidth, and large optical throughput. Spatial heterodyne Fourier-transform (SHFT) spectrometers have been proposed to overcome the limited optical throughput of dispersive and speckle-based on-chip spectrometers. However, state-of-the-art SHFT spectrometers in near-infrared achieve large optical throughput only within a narrow operational bandwidth. Here we demonstrate for the first time, to the best of our knowledge, a broadband silicon nitride SHFT spectrometer with the largest light collecting multiaperture input (320×410µm2) ever implemented in an SHFT on-chip spectrometer. The device was fabricated using 248 nm deep-ultraviolet lithography, exhibiting over 13 dB of optical throughput improvement compared to a single-aperture device. The measured resolution varies between 29 and 49 pm within the 1260-1600 nm wavelength range.

7.
Sensors (Basel) ; 21(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916817

RESUMO

We theoretically explore the potential of Si3N4 on SiO2 waveguide platform toward a wideband spectroscopic detection around the optical wavelength of 2 µm. The design of Si3N4 on SiO2 waveguide architectures consisting of a Si3N4 slot waveguide for a wideband on-chip spectroscopic sensing around 2 µm, and a Si3N4 multi-mode interferometer (MMI)-based coupler for light coupling from classical strip waveguide into the identified Si3N4 slot waveguides over a wide spectral range are investigated. We found that a Si3N4 on SiO2 slot waveguide structure can be designed for using as optical interaction part over a spectral range of interest, and the MMI structure can be used to enable broadband optical coupling from a strip to the slot waveguide for wideband multi-gas on-chip spectroscopic sensing. Reasons for the operating spectral range of the system are discussed.

8.
Opt Lett ; 46(6): 1341-1344, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720182

RESUMO

Silicon photonics on-chip spectrometers are finding important applications in medical diagnostics, pollution monitoring, and astrophysics. Spatial heterodyne Fourier transform spectrometers (SHFTSs) provide a particularly interesting architecture with a powerful passive error correction capability and high spectral resolution. Despite having an intrinsically large optical throughput (étendue, also referred to as Jacquinot's advantage), state-of-the-art silicon SHFTSs have not exploited this advantage yet. Here, we propose and experimentally demonstrate for the first time, to the best of our knowledge, an SHFTS implementing a wide-area light collection system simultaneously feeding an array of 16 interferometers, with an input aperture as large as 90µm×60µm formed by a two-way-fed grating coupler. We experimentally demonstrate 85 pm spectral resolution, 600 pm bandwidth, and 13 dB étendue increase, compared with a device with a conventional grating coupler input. The SHFTS was fabricated using 193 nm deep-UV optical lithography and integrates a large-size input aperture with an interferometer array and monolithic Ge photodetectors, in a 4.5mm2 footprint.

9.
Opt Lett ; 46(3): 617-620, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528423

RESUMO

Surface grating couplers are fundamental building blocks for coupling the light between optical fibers and integrated photonic devices. However, the operational bandwidth of conventional grating couplers is intrinsically limited by their wavelength-dependent radiation angle. The few dual-band grating couplers that have been experimentally demonstrated exhibit low coupling efficiencies and rely on complex fabrication processes. Here we demonstrate for the first time, to the best of our knowledge, the realization of an efficient dual-band grating coupler fabricated using 193 nm deep-ultraviolet lithography for 10 Gbit symmetric passive optical networks. The footprint of the device is 17×10µm2. We measured coupling efficiencies of -4.9 and -5.2dB with a 3-dB bandwidth of 27 and 56 nm at the wavelengths of 1270 and 1577 nm, corresponding to the upstream and downstream channels, respectively.

10.
ACS Photonics ; 7(12): 3423-3429, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33365361

RESUMO

Midinfrared spectroscopy is a universal way to identify chemical and biological substances. Indeed, when interacting with a light beam, most molecules are responsible for absorption at specific wavelengths in the mid-IR spectrum, allowing to detect and quantify small traces of substances. On-chip broadband light sources in the mid-infrared are thus of significant interest for compact sensing devices. In that regard, supercontinuum generation offers a mean to efficiently perform coherent light conversion over an ultrawide spectral range, in a single and compact device. This work reports the experimental demonstration of on-chip two-octave supercontinuum generation in the mid-infrared wavelength, ranging from 3 to 13 µm (that is larger than 2500 cm-1) and covering almost the full transparency window of germanium. Such an ultrawide spectrum is achieved thanks to the unique features of Ge-rich graded SiGe waveguides, which allow second-order dispersion tailoring and low propagation losses over a wide wavelength range. The influence of the pump wavelength and power on the supercontinuum spectra has been studied. A good agreement between the numerical simulations and the experimental results is reported. Furthermore, a very high coherence is predicted in the entire spectrum. These results pave the way for wideband, coherent, and compact mid-infrared light sources by using a single device and compatible with large-scale fabrication processes.

11.
Opt Lett ; 45(23): 6559-6562, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258861

RESUMO

A polarization tolerant optical receiver is a key building block for the development of wavelength division multiplexing based high-speed optical data links. However, the design of a polarization independent demultiplexer is not trivial. In this Letter, we report on the realization of a polarization tolerant arrayed waveguide grating (AWG) on a 300-mm silicon nitride (SiN) photonic platform. By introducing a series of individual polarization rotators in the middle of the waveguide array, the polarization dependence of the AWG has been substantially reduced. Insertion losses below 2.2 dB and a crosstalk level better than -29dB has been obtained for transverse electric and transverse magnetic polarizations on a four-channel coarse AWG. The AWG temperature sensitivity has also been evaluated. Thanks to the low thermo-optical coefficient of SiN, a thermal shift below 12 pm/°C has been demonstrated.

12.
Opt Lett ; 45(13): 3717-3720, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630937

RESUMO

Brillouin optomechanics has recently emerged as a promising tool to implement new functionalities in silicon photonics, including high-performance opto-RF processing and nonreciprocal light propagation. One key challenge in this field is to maximize the photon-phonon interaction and the phonon lifetime, simultaneously. Here, we propose a new, to the best of our knowledge, strategy that exploits subwavelength engineering of the photonic and phononic modes in silicon membrane waveguides to maximize the Brillouin gain. By properly designing the dimensions of the subwavelength periodic structuration, we tightly confine near-infrared photons and GHz phonons, minimizing leakage losses and maximizing the Brillouin coupling. Our theoretical analysis predicts a high mechanical quality factor of up to 700 and a remarkable Brillouin gain yielding 3500(W⋅m)-1 for minimum feature size of 50 nm, compatible with electron-beam lithography. We believe that the proposed waveguide with subwavelength nanostructure holds great potential for the engineering of Brillouin optomechanical interactions in silicon.

13.
Opt Express ; 28(8): 10888-10898, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403610

RESUMO

Dual-comb spectroscopy using a silicon Mach-Zehnder modulator is reported for the first time. First, the properties of frequency combs generated by silicon modulators are assessed in terms of tunability, coherence, and number of lines. Then, taking advantage of the frequency agility of electro-optical frequency combs, a new technique for fine resolution absorption spectroscopy is proposed, named frequency-tuning dual-comb spectroscopy, which combines dual-comb spectroscopy and frequency spacing tunability to measure optical spectra with detection at a unique RF frequency. As a proof of concept, a 24 GHz optical bandwidth is scanned with a 1 GHz resolution.

14.
Opt Express ; 28(9): 12771-12779, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403767

RESUMO

The mid-infrared (mid-IR) wavelength range hosts unique vibrational and rotational resonances of a broad variety of substances that can be used to unambiguously detect the molecular composition in a non-intrusive way. Mid-IR photonic-integrated circuits (PICs) are thus expected to have a major impact in many applications. Still, new challenges are posed by the large spectral width required to simultaneously identify many substances using the same photonic circuit. Ge-rich graded SiGe waveguides have been proposed as a broadband platform approach for mid-IR PICs. In this work, ultra-broadband waveguides are experimentally demonstrated within unprecedented wavelength range, efficiently guiding light from 5 to 11 µm. Interestingly, losses from 0.5 to 1.2 dB/cm are obtained between 5.1 and 8 µm wavelength, and values below 3 dB/cm are measured from 9.5 to 11.2 µm wavelength. An increase of propagation losses is seen between 8 and 9.5 µm; however, values stay below 4.6 dB/cm in the entire wavelength range. A detailed analysis of propagation losses is reported, supported by secondary ion mass spectrometry measurement, and different contributions are analyzed: silicon substrate absorption, oxygen impurities, free carrier absorption by residual doping, sidewall roughness and multiphonon absorption. Finally, Mach-Zehnder interferometers are characterized, and wideband operation is experimentally obtained from 5.5 to 10.5 µm wavelength.

15.
Sci Rep ; 9(1): 14633, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601832

RESUMO

Miniaturized optical spectrometers providing broadband operation and fine resolution have an immense potential for applications in remote sensing, non-invasive medical diagnostics and astronomy. Indeed, optical spectrometers working in the mid-infrared spectral range have garnered a great interest for their singular capability to monitor the main absorption fingerprints of a wide range of chemical and biological substances. Fourier-transform spectrometers (FTS) are a particularly interesting solution for the on-chip integration due to their superior robustness against fabrication imperfections. However, the performance of current on-chip FTS implementations is limited by tradeoffs in bandwidth and resolution. Here, we propose a new FTS approach that gathers the advantages of spatial heterodyning and optical path tuning by thermo-optic effect to overcome this tradeoff. The high resolution is provided by spatial multiplexing among different interferometers with increasing imbalance length, while the broadband operation is enabled by fine tuning of the optical path delay in each interferometer harnessing the thermo-optic effect. Capitalizing on this concept, we experimentally demonstrate a mid-infrared SiGe FTS, with a resolution better than 15 cm-1 and a bandwidth of 603 cm-1 near 7.7 µm wavelength with a 10 MZI array. This is a resolution comparable to state-of-the-art on-chip mid-infrared spectrometers with a 4-fold bandwidth increase with a footprint divided by a factor two.

16.
Opt Lett ; 44(18): 4578-4581, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31517935

RESUMO

Wideband and polarization-independent wavelength filters with low sensitivity to temperature variations have great potential for wavelength division multiplexing applications. However, simultaneously achieving these metrics is challenging for silicon-on-insulator photonics technology. Here, we harness the reduced index contrast and the low thermo-optic coefficient of silicon nitride to demonstrate waveguide Bragg grating filters with wideband apolar rejection and low thermal sensitivity. Filter birefringence is reduced by judicious design of a triangularly shaped lateral corrugation. Based on this approach, we demonstrate silicon nitride Bragg filters with a measured polarization-independent 40 dB optical rejection with negligible off-band excess loss, and a sensitivity to thermal variations below 20 pm/°C.

17.
Opt Express ; 27(18): 26239-26250, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510482

RESUMO

The availability of low-loss optical interfaces to couple light between standard optical fibers and high-index-contrast silicon waveguides is essential for the development of chip-integrated nanophotonics. Input and output couplers based on diffraction gratings are attractive coupling solutions. Advanced grating coupler designs, with Bragg or metal mirror underneath, low- and high-index overlays, and multi-level or multi-layer layouts, have proven less useful due to customized or complex fabrication, however. In this work, we propose a rather simpler in design of efficient off-chip fiber couplers that provide a simulated efficiency up to 95% (-0.25 dB) at a wavelength of 1.55 µm. These grating couplers are formed with an L-shaped waveguide profile and synthesized subwavelength grating metamaterials. This concept jointly provides sufficient degrees of freedom to simultaneously control the grating directionality and out-radiated field profile of the grating mode. The proposed chip-to-fiber couplers promote robust sub-decibel coupling of light, yet contain device dimensions (> 120 nm) compatible with standard lithographic technologies presently available in silicon nanophotonic foundries. Fabrication imperfections are also investigated. Dimensional offsets of ± 15 nm in shallow-etch depth and ± 10 nm in linewidth's and mask misalignments are tolerated for a 1-dB loss penalty. The proposed concept is meant to be universal, which is an essential prerequisite for developing reliable and low-cost optical couplers. We foresee that the work on L-shaped grating couplers with sub-decibel coupling efficiencies could also be a valuable direction for silicon chip interfacing in integrated nanophotonics.

18.
Opt Express ; 27(13): 17701-17707, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252726

RESUMO

The successful integration of capacitive phase shifters featuring a p-type strained SiGe layer in a 300 mm silicon photonics platform is presented. The phase shift is evaluated with a voltage swing of only 0.9 Vpp, compatible with CMOS technology. A good correlation is shown between the phase shift efficiency from 10 to 60°/mm and the capacitive oxide thickness varying from 15 to 4 nm. Corresponding insertion losses are as low as 3 dB/mm thanks to the development of low loss poly-silicon and to a careful design of the doped layers within the waveguide. The thin SiGe layer brings an additional 20% gain in efficiency due to higher hole efficiency in strained SiGe.

19.
Sci Rep ; 9(1): 3604, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837661

RESUMO

High-performance optical beam splitters are of fundamental importance for the development of advanced silicon photonics integrated circuits. However, due to the high refractive index contrast of silicon-on-insulator platforms, state-of-the-art nanophotonic splitters are hampered by trade-offs in bandwidth, polarization dependence and sensitivity to fabrication errors. Here, we present a new strategy that exploits modal engineering in slotted waveguides to overcome these limitations, enabling ultra-broadband polarization-insensitive optical power splitters with relaxed fabrication tolerances. The proposed splitter design relies on a single-mode slot waveguide that is gradually transformed into two strip waveguides by a symmetric taper, yielding equal power splitting. Based on this concept, we experimentally demonstrate -3 ± 0.5 dB polarization-independent transmission for an unprecedented 390 nm bandwidth (1260-1650 nm), even in the presence of waveguide width deviations as large as ±25 nm.

20.
Sci Rep ; 9(1): 5347, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926853

RESUMO

Sub-wavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the propagation of light. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size. Here, we present a new nanophotonic waveguide grating concept that exploits phase-matching engineering to suppress diffraction effects for a period three times larger than those with SWG approaches. This long-period grating not only facilitates fabrication, but also enables a new diffraction-less regime with additional degrees of freedom to control light propagation. More specifically, the proposed phase-matching engineering enables selective diffraction suppression, providing new tools to shape propagation in the grating. We harness this flexible diffraction control to yield single-mode propagation in, otherwise, highly multimode waveguides, and to implement Bragg filters that combine highly-diffractive and diffraction-less regions to dramatically increase light rejection. Capitalizing on this new concept, we experimentally demonstrate a Si membrane Bragg filter with record rejection value exceeding 60 dB. These results demonstrate the potential of the proposed long-period grating for the engineering of diffraction in nanophotonic waveguides and pave the way for the development of a new generation of high-performance Si photonics devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...