Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PEARC20 (2020) ; 2020: 461-464, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35615582

RESUMO

Top-down mass spectrometry-based proteomics has become the method of choice for identifying and quantifying intact proteoforms in biological samples. We present a web-based gateway for TopPIC suite, a widely used software suite consisting of four software tools for top-down mass spectrometry data interpretation: TopFD, TopPIC, TopMG, and TopDiff. The gateway enables the community to use heterogeneous collection of computing resources that includes high performance computing clusters at Indiana University and virtual clusters on XSEDE's Jetstream Cloud resource for top-down mass spectral data analysis using TopPIC suite. The gateway will be a useful resource for proteomics researchers and students who have limited access to high-performance computing resources or who are not familiar with interacting with server-side supercomputers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31598610

RESUMO

The amount of DNA sequencing data has been exponentially growing during the past decade due to advances in sequencing technology. Processing and modeling large amounts of sequencing data can be computationally intractable for desktop computing platforms. High performance computing (HPC) resources offer advantages in terms of computing power, and can be a general solution to these problems. Using HPCs directly for computational needs requires skilled users who know their way around HPCs and acquiring such skills take time. Science gateways acts as the middle layer between users and HPCs, providing users with the resources to accomplish compute-intensive tasks without requiring specialized expertise. We developed a web-based computing platform for genome biologists by customizing the PHP Gateway for Airavata (PGA) framework that accesses publicly accessible HPC resources via Apache Airavata. This web computing platform takes advantage of the Extreme Science and Engineering Discovery Environment (XSEDE) which provides the resources for gateway development, including access to CPU, GPU, and storage resources. We used this platform to develop a gateway for the dREG algorithm, an online computing tool for finding functional regions in mammalian genomes using nascent RNA sequencing data. The dREG gateway provides its users a free, powerful and user-friendly GPU computing resource based on XSEDE, circumventing the need of specialized knowledge about installation, configuration, and execution on an HPC for biologists. The dREG gateway is available at: https://dREG.dnasequence.org/.

3.
Health Inf Sci Syst ; 1: 6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25825658

RESUMO

The exponential increase of genomic data brought by the advent of the next or the third generation sequencing (NGS) technologies and the dramatic drop in sequencing cost have driven biological and medical sciences to data-driven sciences. This revolutionary paradigm shift comes with challenges in terms of data transfer, storage, computation, and analysis of big bio/medical data. Cloud computing is a service model sharing a pool of configurable resources, which is a suitable workbench to address these challenges. From the medical or biological perspective, providing computing power and storage is the most attractive feature of cloud computing in handling the ever increasing biological data. As data increases in size, many research organizations start to experience the lack of computing power, which becomes a major hurdle in achieving research goals. In this paper, we review the features of publically available bio and health cloud systems in terms of graphical user interface, external data integration, security and extensibility of features. We then discuss about issues and limitations of current cloud systems and conclude with suggestion of a biological cloud environment concept, which can be defined as a total workbench environment assembling computational tools and databases for analyzing bio/medical big data in particular application domains.

4.
IEEE Trans Nanobioscience ; 11(3): 266-72, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22987133

RESUMO

MicroRNAs, by regulating the expression of hundreds of target genes, play critical roles in developmental biology and the etiology of numerous diseases, including cancer. As a vast amount of microRNA expression profile data are now publicly available, the integration of microRNA expression data sets with gene expression profiles is a key research problem in life science research. However, the ability to conduct genome-wide microRNA-mRNA (gene) integration currently requires sophisticated, high-end informatics tools, significant expertise in bioinformatics and computer science to carry out the complex integration analysis. In addition, increased computing infrastructure capabilities are essential in order to accommodate large data sets. In this study, we have extended the BioVLAB cloud workbench to develop an environment for the integrated analysis of microRNA and mRNA expression data, named BioVLAB-MMIA. The workbench facilitates computations on the Amazon EC2 and S3 resources orchestrated by the XBaya Workflow Suite. The advantages of BioVLAB-MMIA over the web-based MMIA system include: 1) readily expanded as new computational tools become available; 2) easily modifiable by re-configuring graphic icons in the workflow; 3) on-demand cloud computing resources can be used on an "as needed" basis; 4) distributed orchestration supports complex and long running workflows asynchronously. We believe that BioVLAB-MMIA will be an easy-to-use computing environment for researchers who plan to perform genome-wide microRNA-mRNA (gene) integrated analysis tasks.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Genômica/métodos , Internet , MicroRNAs/genética , RNA Mensageiro/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...