Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Imaging ; 16(7): 892-901, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33059559

RESUMO

BACKGROUND: Quality Assurance (QA) of Magnetic Resonance Imaging (MRI) system is an essential step to avoid problems in diagnosis when image quality is low. It is considered a patient safety issue. The accreditation program of the American College of Radiology (ACR) includes a standardized image quality measurement protocol. However, it has been shown that human testing by visual inspection is not objective and not reproducible. METHODS: The overall goal of the present paper was to develop and implement a fully automated method for accurate image analysis to increase its objectivity. It can positively impact the QA process by decreasing the reaction time, improving repeatability, and by reducing operator dependency. The proposed QA procedures were applied to ten clinical MRI scanners. The performance of the automated procedure was assessed by comparing the test results with the decisions made by trained MRI technologists according to ACR guidelines. The p-value, correlation coefficient of the manual and automatic measurements were also computed using the Pearson test. RESULTS AND CONCLUSION: Compared to the manual process, the use of the proposed approach can significantly reduce the time requirements while maintaining consistency with manual measurements and furthermore, decrease the subjectivity of the results. Accordingly, a strong correlation was found and the corresponding p-value was much lower than the significance level of 0.05 indicating a good agreement between the two measurements.


Assuntos
Imageamento por Ressonância Magnética , Imagens de Fantasmas , Acreditação , Humanos , Processamento de Imagem Assistida por Computador , Garantia da Qualidade dos Cuidados de Saúde , Controle de Qualidade
2.
Curr Med Imaging Rev ; 16(2): 164-173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32003317

RESUMO

PURPOSE: The purpose of this study was to investigate T1 relaxation time of the human Achilles tendon, to test its short-term repeatability as well as the minimal detectable change, and to assess the extent that correlate with clinical symptoms. METHODS: Twenty asymptomatic volunteers and eighteen patients with clinically and sonographically confirmed tendinopathy were scanned for ankle using a 3 Tesla (T) MR scanner. T1 maps were calculated from a variable flip angle gradient echo Ultra-short echo time sequence (VFA-GE UTE) and inversion recovery spin echo sequence (IR-SE) using a self-developed matlab algorithm in three regions of interest of Achilles Tendon (AT). Signal to Noise Ratio (SNR) between the two sequences was evaluated. INTRA-class Correlation Coefficient (ICC), Coefficient of Variation (CV) and the Least Significant Change (LSC) were calculated, to test short-term repeatability of T1. Subjects were assessed by the VISA-A clinical score. P values less than 0.005 were considered statistically significant. RESULTS: Mean T1 values were 427.09 ± 53.37 ms and 528.70 ± 103.50 ms using IR-SE sequence and 575.43 ± 110.60 ms and 875.81 ± 425.77 ms with VFA-GE UTE sequence in the whole AT for volunteers and patients, respectively. T1 values showed a significant difference between volunteers and patients (P=0.001). Regional variation of T1 in healthy and tendinopathic AT were greater for VFA-GE UTE sequence than for IR-SE sequence. VFA-GE UTE sequence showed clearly higher SNR compared to IR-SE sequence. Short-term repeatability of T1 values for volunteers showed an LSC of 22% and 14% for IR-SE sequence and VFA-GE UTE sequence, respectively. For patients, LSC was 14% and 5% for IR-SE sequence and VFA-GE UTE sequence, respectively. There was no correlation between T1 and VISA-A clinical score (p>0.005). CONCLUSION: VFA-GE UTE sequence used for T1 mapping calculation demonstrated short acquisition time and clearly high SNR. Results revealed that T1 relaxation time can be used as a biomarker to differentiate between healthy and pathologic Achilles tendon. However, T1 showed no correlation with the VISA-A clinical score.


Assuntos
Tendão do Calcâneo , Tendinopatia , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/patologia , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Tendinopatia/diagnóstico por imagem , Tendinopatia/patologia
3.
Radiat Prot Dosimetry ; 188(4): 536-542, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32043150

RESUMO

This study aims to develop an Automatic Brain Dose Estimation (ABDE) methodology for head computed tomography examinations. The ABDE is to be applied first to an anthropomorphic Alderson phantom to obtain a Correction factor (Cf) between the ABDE and the direct absorbed brain dose using dosemeters positioned within the anthropomorphic phantom. Then, in order to estimate the correct brain dose for patient, the Cf was multiplied by the mean ABDE values for each patient. Results were compared to those registered with a mathematical simulation phantom using CT-Expo V 2.4 software. Results showed no significant difference between the correct ABDE values and the CT-Expo values with a mean percent difference of 2.54 ± 0.01%. In conclusion, ABDE yields a correct estimation of brain dose, taking into account the size and attenuation of the irradiated region. Thus, it is clinically recommended for accurate patient brain dose assessment.


Assuntos
Cabeça , Tomografia Computadorizada por Raios X , Encéfalo/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Doses de Radiação
4.
Med Biol Eng Comput ; 57(4): 925-938, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30483913

RESUMO

The recent challenge in high angular resolution diffusion imaging (HARDI) is to find a tractography process that provides information about the neural architecture within the white matter of the brain in a clinically feasible measurement time. The great success of the HARDI technique comes from its capability to overcome the problem of crossing fiber detection. However, it requires a large number of diffusion-weighted (DW) images which is problematic for clinical time and hardware. The main contribution of this paper is to develop a full tractography framework that gives an accurate estimate of the crossing fiber problem with the aim of reducing data acquisition time. We explore the interpolation in the gradient direction domain as a method to estimate the HARDI signal from a reduced set of DW images. The experimentation was performed in a first time on simulated data for a quantitative evaluation using the Tractometer system. We used, also, in vivo human brain data to demonstrate the potential of our pipeline. Results on both simulated and real data illustrate the effectiveness of our approach to perform the brain connectivity. Overall, we have shown that the proposed approach achieves competitive results to other tractography methods according to Tractometer connectivity metrics. Graphical Abstract.


Assuntos
Algoritmos , Imagem de Tensor de Difusão/métodos , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Imagens de Fantasmas
5.
Med Princ Pract ; 27(5): 443-450, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29895028

RESUMO

OBJECTIVE: This study aims to determine how magnetic resonance imaging (MRI) acquisition techniques and calculation methods affect T2 values of knee cartilage at 1.5 tesla and to identify sequences that can be used for high-resolution T2 mapping in short scanning times. MATERIALS AND METHODS: This study was performed on phantom and 29 patients who underwent MRI of the knee joint at 1.5 tesla. The protocol includes T2 mapping sequences based on Single-Echo Spin Echo (SESE), Multi-Echo Spin Echo (MESE), Fast Spin Echo (FSE) and Turbo Gradient Spin Echo (TGSE). The T2 relaxation times were quantified and evaluated using three calculation methods (MapIt, Syngo Offline and mono-exponential fit). signal-to-noise ratios (SNR) were measured in all sequences. All statistical analyses were performed using the t-test. RESULTS: The average T2 values in phantom were 41.7 ± 13.8 ms for SESE, 43.2 ± 14.4 ms for MESE, 42.4 ± 14.1 ms for FSE and 44 ± 14.5 ms for TGSE. In the patient study, the mean differences were 6.5 ± 8.2 ms, 7.8 ± 7.6 ms and 8.4 ± 14.2 ms for MESE, FSE and TGSE compared to SESE, respectively; these statistical results were not significantly different (p > 0.05). The comparison between the three calculation methods showed no significant difference (p > 0.05). The t-test showed no significant difference between SNR values for all sequences. CONCLUSION: T2 values depend not only on the sequence type but also on the calculation method. None of the sequences revealed significant differences compared to the SESE reference sequence. TGSE with its short scanning time can be used for high-resolution T2 mapping.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...