Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Learn Health Syst ; 8(1): e10365, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38249839

RESUMO

Open and practical exchange, dissemination, and reuse of specimens and data have become a fundamental requirement for life sciences research. The quality of the data obtained and thus the findings and knowledge derived is thus significantly influenced by the quality of the samples, the experimental methods, and the data analysis. Therefore, a comprehensive and precise documentation of the pre-analytical conditions, the analytical procedures, and the data processing are essential to be able to assess the validity of the research results. With the increasing importance of the exchange, reuse, and sharing of data and samples, procedures are required that enable cross-organizational documentation, traceability, and non-repudiation. At present, this information on the provenance of samples and data is mostly either sparse, incomplete, or incoherent. Since there is no uniform framework, this information is usually only provided within the organization and not interoperably. At the same time, the collection and sharing of biological and environmental specimens increasingly require definition and documentation of benefit sharing and compliance to regulatory requirements rather than consideration of pure scientific needs. In this publication, we present an ongoing standardization effort to provide trustworthy machine-actionable documentation of the data lineage and specimens. We would like to invite experts from the biotechnology and biomedical fields to further contribute to the standard.

2.
Bioengineering (Basel) ; 10(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37508827

RESUMO

Engineering functional tissues of clinically relevant size (in mm-scale) in vitro is still a challenge in tissue engineering due to low oxygen diffusion and lack of vascularization. To address these limitations, a perfusion bioreactor was used to generate contractile engineered muscles of a 3 mm-thickness and a 8 mm-diameter. This study aimed to upscale the process to 50 mm in diameter by combining murine skeletal myoblasts (SkMbs) with human adipose-derived stromal vascular fraction (SVF) cells, providing high neuro-vascular potential in vivo. SkMbs were cultured on a type-I-collagen scaffold with (co-culture) or without (monoculture) SVF. Large-scale muscle-like tissue showed an increase in the maturation index over time (49.18 ± 1.63% and 76.63 ± 1.22%, at 9 and 11 days, respectively) and a similar force of contraction in mono- (43.4 ± 2.28 µN) or co-cultured (47.6 ± 4.7 µN) tissues. Four weeks after implantation in subcutaneous pockets of nude rats, the vessel length density within the constructs was significantly higher in SVF co-cultured tissues (5.03 ± 0.29 mm/mm2) compared to monocultured tissues (3.68 ± 0.32 mm/mm2) (p < 0.005). Although no mature neuromuscular junctions were present, nerve-like structures were predominantly observed in the engineered tissues co-cultured with SVF cells. This study demonstrates that SVF cells can support both in vivo vascularization and innervation of contractile muscle-like tissues, making significant progress towards clinical translation.

3.
Front Cardiovasc Med ; 9: 881557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225961

RESUMO

Surgical revascularization is the gold standard in most cases of complex coronary artery disease. For coronary artery bypass grafting, autologous grafts are state-of-the-art due to their long-term patency. A non-negligible amount of patients lack suitable bypass material as a result of concomitant diseases or previous interventions. As a promising alternative, tissue-engineered vascular grafts made of biomaterials such as bacterial cellulose (BC) are gaining more and more attention. However, the production of small-diameter grafts (inner diameter < 6 mm) of application-oriented length (> 5 cm) and their in vivo long-term patency remain challenging. In this study, grafts of 20 cm in length with an inner diameter of 3 mm were generated in a custom-made bioreactor. To potentially improve graft compliance and, therefore in vivo patency, BC was combined with an embedded cobalt-chromium mesh. The grafts were designed for in vivo endothelialization and specific surgical properties and implanted as an aortocoronary bypass in a left anterior descending occluded pig model (n = 8). Coronary angiography showed complete patency postoperatively at 4 weeks. Following 4 weeks in vivo, the grafts were explanted revealing a three-layered wall structure. Grafts were colonized by smooth muscle cells and a luminal layer of endothelial cells with early formation of vasa privata indicating functional remodeling. These encouraging findings in a large animal model reveal the great potential of small-diameter BC grafts for coronary and peripheral bypass grafting.

4.
iScience ; 25(5): 104297, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35586070

RESUMO

Functional three-dimensional (3D) engineered cardiac tissue (ECT) models are essential for effective drug screening and biological studies. Application of physiological cues mimicking those typical of the native myocardium is known to promote the cardiac maturation and functionality in vitro. Commercially available bioreactors can apply one physical force type at a time and often in a restricted loading range. To overcome these limitations, a millimetric-scale microscope-integrated bioreactor was developed to deliver multiple biophysical stimuli to ECTs. In this study, we showed that the single application of auxotonic loading (passive) generated a bizonal ECT with a unique cardiac maturation pattern. Throughout the statically cultured constructs and in the ECT region exposed to high passive loading, cardiomyocytes predominantly displayed a round morphology and poor contractility ability. The ECT region with a low passive mechanical stimulation instead showed both rat- and human-origin cardiac cell maturation and organization, as well as increased ECT functionality.

5.
Front Bioeng Biotechnol ; 10: 1031183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686253

RESUMO

The application of biomimetic physical stimuli replicating the in vivo dynamic microenvironment is crucial for the in vitro development of functional cardiac tissues. In particular, pulsed electrical stimulation (ES) has been shown to improve the functional properties of in vitro cultured cardiomyocytes. However, commercially available electrical stimulators are expensive and cumbersome devices while customized solutions often allow limited parameter tunability, constraining the investigation of different ES protocols. The goal of this study was to develop a versatile compact electrical stimulator (ELETTRA) for biomimetic cardiac tissue engineering approaches, designed for delivering controlled parallelizable ES at a competitive cost. ELETTRA is based on an open-source micro-controller running custom software and is combinable with different cell/tissue culture set-ups, allowing simultaneously testing different ES patterns on multiple samples. In particular, customized culture chambers were appositely designed and manufactured for investigating the influence of monophasic and biphasic pulsed ES on cardiac cell monolayers. Finite element analysis was performed for characterizing the spatial distributions of the electrical field and the current density within the culture chamber. Performance tests confirmed the accuracy, compliance, and reliability of the ES parameters delivered by ELETTRA. Biological tests were performed on neonatal rat cardiac cells, electrically stimulated for 4 days, by comparing, for the first time, the monophasic waveform (electric field = 5 V/cm) to biphasic waveforms by matching either the absolute value of the electric field variation (biphasic ES at ±2.5 V/cm) or the total delivered charge (biphasic ES at ±5 V/cm). Findings suggested that monophasic ES at 5 V/cm and, particularly, charge-balanced biphasic ES at ±5 V/cm were effective in enhancing electrical functionality of stimulated cardiac cells and in promoting synchronous contraction.

6.
Lab Chip ; 21(21): 4177-4195, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34545378

RESUMO

Cardiac fibrosis is a maladaptive remodeling of the myocardium hallmarked by contraction impairment and excessive extracellular matrix deposition (ECM). The disease progression, nevertheless, remains poorly understood and present treatments are not capable of controlling the scarring process. This is partly due to the absence of physiologically relevant, easily operable, and low-cost in vitro models, which are of the utmost importance to uncover pathological mechanisms and highlight possible targets for anti-fibrotic therapies. In classic models, fibrotic features are usually obtained using substrates with scar mimicking stiffness and/or supplementation of morphogens such as transforming growth factor ß1 (TGF-ß1). Qualities such as the interplay between activated fibroblasts (FBs) and cardiomyocytes (CMs), or the mechanically active, three-dimensional (3D) environment, are, however, neglected or obtained at the expense of the number of experimental replicates achievable. To overcome these shortcomings, we engineered a micro-physiological system (MPS) where multiple 3D cardiac micro-tissues can be subjected to cyclical stretching simultaneously. Up to six different biologically independent samples are incorporated in a single device, increasing the experimental throughput and paving the way for higher yielding drug screening campaigns. The newly developed MPS was used to co-culture different ratios of neonatal rat CMs and FBs, investigating the role of CMs in the modulation of fibrosis traits, without the addition of morphogens, and in soft substrates. The expression of contractile stress fibers and of degradative enzymes, as well as the deposition of fibronectin and type I collagen were superior in microtissues with a low amount of CMs. Moreover, high CM-based microconstructs simulating a ratio similar to that of healthy tissues, even if subjected to both cyclic stretch and TGF-ß1, did not show any of the investigated fibrotic signs, indicating a CM fibrosis modulating effect. Overall, this in vitro fibrosis model could help to uncover new pathological aspects studying, with mid-throughput and in a mechanically active, physiologically relevant environment, the crosstalk between the most abundant cell types involved in fibrosis.


Assuntos
Fibroblastos , Miócitos Cardíacos , Animais , Células Cultivadas , Matriz Extracelular , Fibroblastos/patologia , Fibrose , Ratos , Fator de Crescimento Transformador beta1
7.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34360685

RESUMO

The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Hipóxia , Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica , Células Cultivadas , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Ann Thorac Cardiovasc Surg ; 27(4): 273-277, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33536387

RESUMO

PURPOSE: The aim of this study was to analyze the effects of 10-minute (standard term) versus 20-minute treatment with glutaraldehyde (GA) on mechanical stability and physical strength of human pericardium in the setting of the OZAKI procedure. METHODS: Leftover pericardium (6 patients) was bisected directly after the operation, and one-half was further fixed for 10 additional minutes. Uniaxial tensile tests were performed and ultimate tensile strength (UTS), ultimate tensile strain (uts), and collagen elastic modulus were evaluated. RESULTS: Both treatments resulted in similar values of uniaxial stretching-generated elongations at rupture (10 minutes 25 ± 7 % vs. 20 minutes: 22 ± 5 %; p = 0.05), UTS (5.16 ± 2 MPa vs. 6.54 ± 3 MPa; p = 0.59), and collagen fiber stiffness (elastic modulus: 31.80 ± 15.05 MPa vs. 37.35 ± 15.78 MPa; p = 0.25). CONCLUSION: Prolongation of the fixation time of autologous pericardium has no significant effect on its mechanical stability; thus, extending the intraoperative treatment cannot be recommended.


Assuntos
Glutaral , Pericárdio , Resistência à Tração , Glutaral/farmacologia , Humanos , Pericárdio/efeitos dos fármacos , Pericárdio/fisiologia , Resistência à Tração/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento
9.
Bioengineering (Basel) ; 7(4)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007935

RESUMO

Large-scale muscle injury in humans initiates a complex regeneration process, as not only the muscular, but also the vascular and neuro-muscular compartments have to be repaired. Conventional therapeutic strategies often fall short of reaching the desired functional outcome, due to the inherent complexity of natural skeletal muscle. Tissue engineering offers a promising alternative treatment strategy, aiming to achieve an engineered tissue close to natural tissue composition and function, able to induce long-term, functional regeneration after in vivo implantation. This review aims to summarize the latest approaches of tissue engineering skeletal muscle, with specific attention toward fabrication, neuro-angiogenesis, multicellularity and the biochemical cues that adjuvate the regeneration process.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32766218

RESUMO

In the past two decades, relevant advances have been made in the generation of engineered cardiac constructs to be used as functional in vitro models for cardiac research or drug testing, and with the ultimate but still challenging goal of repairing the damaged myocardium. To support cardiac tissue generation and maturation in vitro, the application of biomimetic physical stimuli within dedicated bioreactors is crucial. In particular, cardiac-like mechanical stimulation has been demonstrated to promote development and maturation of cardiac tissue models. Here, we developed an automated bioreactor platform for tunable cyclic stretch and in situ monitoring of the mechanical response of in vitro engineered cardiac tissues. To demonstrate the bioreactor platform performance and to investigate the effects of cyclic stretch on construct maturation and contractility, we developed 3D annular cardiac tissue models based on neonatal rat cardiac cells embedded in fibrin hydrogel. The constructs were statically pre-cultured for 5 days and then exposed to 4 days of uniaxial cyclic stretch (sinusoidal waveform, 10% strain, 1 Hz) within the bioreactor. Explanatory biological tests showed that cyclic stretch promoted cardiomyocyte alignment, maintenance, and maturation, with enhanced expression of typical mature cardiac markers compared to static controls. Moreover, in situ monitoring showed increasing passive force of the constructs along the dynamic culture. Finally, only the stretched constructs were responsive to external electrical pacing with synchronous and regular contractile activity, further confirming that cyclic stretching was instrumental for their functional maturation. This study shows that the proposed bioreactor platform is a reliable device for cyclic stretch culture and in situ monitoring of the passive mechanical response of the cultured constructs. The innovative feature of acquiring passive force measurements in situ and along the culture allows monitoring the construct maturation trend without interrupting the culture, making the proposed device a powerful tool for in vitro investigation and ultimately production of functional engineered cardiac constructs.

11.
J Tissue Eng Regen Med ; 14(10): 1513-1523, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32841501

RESUMO

Therapeutic angiogenesis is the delivery of factors to promote vascular growth and holds promise for the treatment of ischemic heart conditions. Recombinant protein delivery to the myocardium by factor-decorated fibrin matrices is an attractive approach, thanks to the ability to precisely control both dose and duration of the treatment, the use of a clinically approved material like fibrin, and the avoidance of genetic modification. Here, we investigated the feasibility of inducing therapeutic angiogenesis in the rat myocardium by a state-of-the-art fibrin-based delivery platform that we previously optimized. Engineered versions of murine vascular endothelial growth factor A (VEGF164 ) and platelet-derived growth factor BB (PDGF-BB) were fused with an octapeptide substrate of the transglutaminase coagulation factor fXIIIa (TG) to allow their covalent cross-linking into fibrin hydrogels and release by enzymatic cleavage. Hydrogels containing either 100 µg/mL TG-VEGF alone or in combination with 10 µg/mL TG-PDGF-BB or no factor were injected into rat myocardium. Surprisingly, vascular density was severely reduced in all conditions, both in and around the injection site, where large fibrotic scars were formed. Scar formation was not due to the presence of growth factors, adaptive immunity to human proteins, damage from injection, nor to mechanical trauma from the hydrogel stiffness or volume. Rather scar was induced directly by fibrin and persisted despite hydrogel degradation within 1 week. These results caution against the suitability of fibrin-based platforms for myocardial growth factor delivery, despite their efficacy in other tissues, like skeletal muscle. The underlying molecular mechanisms must be further investigated in order to identify rational targets to prevent this serious side effect.


Assuntos
Cicatriz/patologia , Fibrina/efeitos adversos , Coração/efeitos dos fármacos , Hidrogéis/efeitos adversos , Neovascularização Fisiológica , Imunidade Adaptativa , Indutores da Angiogênese/metabolismo , Animais , Fenômenos Biomecânicos , Humanos , Injeções , Infarto do Miocárdio/patologia , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Biochim Biophys Acta Mol Cell Res ; 1867(3): 118561, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31655100

RESUMO

The development of functional and reliable in vitro cardiac models composed of fully mature cardiomyocytes is essential for improving drug screening test quality, therefore, the success of clinical trial outcomes. In their lifespan, cardiomyocytes undergo a dynamic maturation process from the fetal to adult stage, radically changing their metabolism, morphology, contractility and electrical properties. Before employing cells of human origin, in vitro models often use neonatal rat cardiomyocytes (NRCM) to obtain key proof-of-principles. Nevertheless, NRCM monolayers are prone to de-differentiate when maintained in culture. Supplementation of free fatty acids (FFA), the main energy source for mature cardiomyocytes, and co-culture with fibroblasts are each by itself known to promote the shift from fetal to adult cardiomyocytes. Using a co-culture system, our study investigates the effects of FFA on the cardiomyocyte phenotype in comparison to glucose as typical fetal energy source, and to 10% serum used as standard control condition. NRCM decreased their differentiation status and fibroblasts increased in number after 7days of culture in the control condition. On the contrary, both glucose- and FFA-supplementation better preserved protein expression of myosin-light-chain-2v, a marker of mature cardiomyocytes, and the fibroblast number at levels similar to those found in freshly isolated NRCM. Nevertheless, compared to glucose, FFA resulted in a significant increase in sarcomere striation and organization. Our findings constitute an important step forward towards the definition of the optimal culture conditions, highlighting the possible benefits of a further supplementation of specific FFA to promote CM maturation in a co-culture system with FB.


Assuntos
Diferenciação Celular/genética , Ácidos Graxos/metabolismo , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células , Técnicas de Cocultura , Fibroblastos/efeitos dos fármacos , Humanos , Ratos
13.
J Biomech ; 94: 99-106, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31376980

RESUMO

Three-dimensional dynamic suspension is becoming an effective cell culture method for a wide range of bioprocesses, with an increasing number of bioreactors proposed for this purpose. The complex hydrodynamics establishing within these devices affects bioprocess outcomes and efficiency, and usually expensive in vitro trial-and-error experiments are needed to properly set the working parameters. Here we propose a methodology to define a priori the hydrodynamic working parameters of a dynamic suspension bioreactor, selected as a test case because of the complex hydrodynamics characterizing its operating condition. A combination of computational and analytical approaches was applied to generate operational guideline graphs for defining a priori specific working parameters. In detail, 43 simulations were performed under pulsed flow regime to characterize advective transport within the device depending on different operative conditions, i.e., culture medium flow rate and its duty cycle, cultured particle diameter, and initial particle suspension volume. The operational guideline graphs were then used to set specific hydrodynamic working parameters for an in vitro proof-of-principle test, where human induced pluripotent stem cell (hiPSC) aggregates were cultured for 24 h within the bioreactor. The in vitro findings showed that, under the selected pulsed flow regime, sedimentation was avoided, hiPSC aggregate circularity and viability were preserved, and culture heterogeneity was reduced, thus confirming the appropriateness of the a priori method. This methodology has the potential to be adaptable to other dynamic suspension devices to support experimental studies by providing in silico-based a priori knowledge, useful to limit costs and to optimize culture bioprocesses.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Teóricos , Simulação por Computador , Humanos , Hidrodinâmica
14.
Biotechnol Bioeng ; 116(1): 132-142, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171703

RESUMO

Cell-based therapies show promising results in cardiac function recovery mostly through paracrine-mediated processes (as angiogenesis) in chronic ischemia. In this study, we aim to develop a 2D (two-dimensional) in vitro cardiac hypoxia model mimicking severe cardiac ischemia to specifically investigate the prosurvival paracrine effects of adipose tissue-derived stromal vascular fraction (SVF) cell secretome released upon three-dimensional (3D) culture. For the 2D-cardiac hypoxia model, neonatal rat cardiomyocytes (CM) were cultured for 5 days at < 1% (approaching anoxia) oxygen (O2 ) tension. Typical cardiac differentiation hallmarks and contractile ability were used to assess both the cardiomyocyte loss of functionality upon anoxia exposure and its possible recovery following the 5-day-treatment with SVF-conditioned media (collected following 6-day-perfusion-based culture on collagen scaffolds in either normoxia or approaching anoxia). The culture at < 1% O 2 for 5 days mimicked the reversible condition of hibernating myocardium with still living and poorly contractile CM (reversible state). Only SVF-medium conditioned in normoxia expressing a high level of the prosurvival hepatocyte-growth factor (HGF) and insulin-like growth factor (IGF) allowed the partial recovery of the functionality of damaged CM. The secretome generated by SVF-engineered tissues showed a high paracrine potential to rescue the nonfunctional CM, therefore resulting in a promising patch-based treatment of specific low-perfused areas after myocardial infarction.


Assuntos
Tecido Adiposo/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/fisiologia , Comunicação Parácrina , Células Estromais/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Teóricos , Ratos
15.
Integr Biol (Camb) ; 10(3): 174-183, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29532839

RESUMO

In vitro cardiac models able to mimic the fibrotic process are paramount to develop an effective anti-fibrosis therapy that can regulate fibroblast behaviour upon myocardial injury. In previously developed in vitro models, typical fibrosis features were induced by using scar-like stiffness substrates and/or potent morphogen supplementation in monolayer cultures. In our model, we aimed to mimic in vitro a fibrosis-like environment by applying cyclic stretching of cardiac fibroblasts embedded in three-dimensional fibrin-hydrogels alone. Using a microfluidic device capable of delivering controlled cyclic mechanical stretching (10% strain at 1 Hz), some of the main fibrosis hallmarks were successfully reproduced in 7 days. Cyclic strain indeed increased cell proliferation, extracellular matrix (ECM) deposition (e.g. type-I-collagen, fibronectin) and its stiffness, forming a scar-like tissue with superior quality compared to the supplementation of TGFß1 alone. Taken together, the observed findings resemble some of the key steps in the formation of a scar: (i) early fibroblast proliferation, (ii) later phenotype switch into myofibroblasts, (iii) ECM deposition and (iv) stiffening. This in vitro scar-on-a-chip model represents a big step forward to investigate the early mechanisms possibly leading later to fibrosis without any possible confounding supplementation of exogenous potent morphogens.


Assuntos
Cicatriz/patologia , Fibroblastos/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Animais , Animais Recém-Nascidos , Proliferação de Células , Colágeno Tipo I/metabolismo , Dimetilpolisiloxanos/química , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Fibrose/patologia , Humanos , Hidrogéis , Técnicas In Vitro , Dispositivos Lab-On-A-Chip , Microfluídica , Infarto do Miocárdio/patologia , Miofibroblastos/metabolismo , Fenótipo , Ratos , Estresse Mecânico , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização
16.
J Cell Mol Med ; 22(5): 2580-2591, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29478261

RESUMO

Vascular Endothelial Growth Factor (VEGF) can induce normal or aberrant angiogenesis depending on the amount secreted in the microenvironment around each cell. Towards a possible clinical translation, we developed a Fluorescence Activated Cell Sorting (FACS)-based technique to rapidly purify transduced progenitors that homogeneously express a desired specific VEGF level from heterogeneous primary populations. Here, we sought to induce safe and functional angiogenesis in ischaemic myocardium by cell-based expression of controlled VEGF levels. Human adipose stromal cells (ASC) were transduced with retroviral vectors and FACS purified to generate two populations producing similar total VEGF doses, but with different distributions: one with cells homogeneously producing a specific VEGF level (SPEC), and one with cells heterogeneously producing widespread VEGF levels (ALL), but with an average similar to that of the SPEC population. A total of 70 nude rats underwent myocardial infarction by coronary artery ligation and 2 weeks later VEGF-expressing or control cells, or saline were injected at the infarction border. Four weeks later, ventricular ejection fraction was significantly worsened with all treatments except for SPEC cells. Further, only SPEC cells significantly increased the density of homogeneously normal and mature microvascular networks. This was accompanied by a positive remodelling effect, with significantly reduced fibrosis in the infarcted area. We conclude that controlled homogeneous VEGF delivery by FACS-purified transduced ASC is a promising strategy to achieve safe and functional angiogenesis in myocardial ischaemia.


Assuntos
Infarto do Miocárdio/terapia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Tecido Adiposo/citologia , Animais , Linhagem da Célula , Fibrose , Testes de Função Cardíaca , Humanos , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica , Ratos Nus , Transplante de Células-Tronco , Células Estromais/metabolismo
17.
Int J Mol Sci ; 18(11)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160845

RESUMO

Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF) plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1) or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC) freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.


Assuntos
Condrogênese , Cartilagem Hialina/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Cartilagem Hialina/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fatores de Crescimento do Endotélio Vascular/farmacologia
18.
J Am Heart Assoc ; 6(10)2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066438

RESUMO

BACKGROUND: Recent studies suggest that adult cardiac progenitor cells (CPCs) can produce new cardiac cells. Such cell formation requires an intricate coordination of progenitor cell proliferation and commitment, but the molecular cues responsible for this regulation in CPCs are ill defined. METHODS AND RESULTS: Extracellular matrix components are important instructors of cell fate. Using laminin and fibronectin, we induced two slightly distinct CPC phenotypes differing in proliferation rate and commitment status and analyzed the early transcriptomic response to CPC adhesion (<2 hours). Ninety-four genes were differentially regulated on laminin versus fibronectin, consisting of mostly downregulated genes that were enriched for Yes-associated protein (YAP) conserved signature and TEA domain family member 1 (TEAD1)-related genes. This early gene regulation was preceded by the rapid cytosolic sequestration and degradation of YAP on laminin. Among the most strongly regulated genes was polo-like kinase 2 (Plk2). Plk2 expression depended on YAP stability and was enhanced in CPCs transfected with a nuclear-targeted mutant YAP. Phenotypically, the early downregulation of Plk2 on laminin was succeeded by lower cell proliferation, enhanced lineage gene expression (24 hours), and facilitated differentiation (3 weeks) compared with fibronectin. Finally, overexpression of Plk2 enhanced CPC proliferation and knockdown of Plk2 induced the expression of lineage genes. CONCLUSIONS: Plk2 acts as coordinator of cell proliferation and early lineage commitment in CPCs. The rapid downregulation of Plk2 on YAP inactivation marks a switch towards enhanced commitment and facilitated differentiation. These findings link early gene regulation to cell fate and provide novel insights into how CPC proliferation and differentiation are orchestrated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem da Célula , Proliferação de Células , Células Progenitoras Endoteliais/enzimologia , Miócitos Cardíacos/enzimologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Adesão Celular , Proteínas de Ciclo Celular , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Fibronectinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Laminina/metabolismo , Camundongos Transgênicos , Neovascularização Fisiológica , Fenótipo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas de Sinalização YAP
19.
Adv Healthc Mater ; 6(24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28994225

RESUMO

Delivery of genetically modified cells overexpressing Vascular Endothelial Growth Factor (VEGF) is a promising approach to induce therapeutic angiogenesis in ischemic tissues. The effect of the protein is strictly modulated by its interaction with the components of the extracellular matrix. Its therapeutic potential depends on a sustained but controlled release at the microenvironmental level in order to avoid the formation of abnormal blood vessels. In this study, it is hypothesized that the composition of the scaffold plays a key role in modulating the binding, hence the therapeutic effect, of the VEGF released by 3D-cell constructs. It is found that collagen sponges, which poorly bind VEGF, prevent the formation of localized hot spots of excessive concentration, therefore, precluding the development of aberrant angiogenesis despite uncontrolled expression by a genetically engineered population of adipose tissue-derived stromal cells. On the contrary, after seeding on VEGF-binding egg-white scaffolds, the same cell population caused aberrantly enlarged vascular structures after 14 d. Collagen-based engineered tissues also induced a safe and efficient angiogenesis in both the patch itself and the underlying myocardium in rat models. These findings open new perspectives on the control and the delivery of proangiogenic stimuli, and are fundamental for the vascularization of engineered tissues/organs.


Assuntos
Neovascularização Fisiológica , Células Estromais/metabolismo , Engenharia Tecidual , Alicerces Teciduais , Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular , Colágeno/metabolismo , Matriz Extracelular , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Miocárdio/citologia , Miocárdio/metabolismo , Ratos , Ratos Nus
20.
Sci Rep ; 7(1): 14252, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079730

RESUMO

In vitro recapitulation of an organotypic stromal environment, enabling efficient angiogenesis, is crucial to investigate and possibly improve vascularization in regenerative medicine. Our study aims at engineering the complexity of a vascular milieu including multiple cell-types, a stromal extracellular matrix (ECM), and molecular signals. For this purpose, the human adipose stromal vascular fraction (SVF), composed of a heterogeneous mix of pericytes, endothelial/stromal progenitor cells, was cultured under direct perfusion flow on three-dimensional (3D) collagen scaffolds. Perfusion culture of SVF-cells reproducibly promoted in vitro the early formation of a capillary-like network, embedded within an ECM backbone, and the release of numerous pro-angiogenic factors. Compared to static cultures, perfusion-based engineered constructs were more rapidly vascularized and supported a superior survival of delivered cells upon in vivo ectopic implantation. This was likely mediated by pericytes, whose number was significantly higher (4.5-fold) under perfusion and whose targeted depletion resulted in lower efficiency of vascularization, with an increased host foreign body reaction. 3D-perfusion culture of SVF-cells leads to the engineering of a specialized milieu, here defined as an angiogenic niche. This system could serve as a model to investigate multi-cellular interactions in angiogenesis, and as a module supporting increased grafted cell survival in regenerative medicine.


Assuntos
Tecido Adiposo/citologia , Técnicas de Cultura de Células/métodos , Engenharia Celular/métodos , Neovascularização Fisiológica , Células Estromais/citologia , Animais , Proliferação de Células , Espaço Extracelular/metabolismo , Humanos , Masculino , Perfusão , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...