Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(6): 101410, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34785214

RESUMO

Pluripotent stem cells are known to shift their mitochondrial metabolism upon differentiation, but the mechanisms underlying such metabolic rewiring are not fully understood. We hypothesized that during differentiation of human induced pluripotent stem cells (hiPSCs), mitochondria undergo mitophagy and are then replenished by the biogenesis of new mitochondria adapted to the metabolic needs of the differentiated cell. To evaluate mitophagy during iPSC differentiation, we performed live cell imaging of mitochondria and lysosomes in hiPSCs differentiating into vascular endothelial cells using confocal microscopy. We observed a burst of mitophagy during the initial phases of hiPSC differentiation into the endothelial lineage, followed by subsequent mitochondrial biogenesis as assessed by the mitochondrial biogenesis biosensor MitoTimer. Furthermore, hiPSCs undergoing differentiation showed greater mitochondrial oxidation of fatty acids and an increase in ATP levels as assessed by an ATP biosensor. We also found that during mitophagy, the mitochondrial phosphatase PGAM5 is cleaved in hiPSC-derived endothelial progenitor cells and in turn activates ß-catenin-mediated transcription of the transcriptional coactivator PGC-1α, which upregulates mitochondrial biogenesis. These data suggest that mitophagy itself initiates the increase in mitochondrial biogenesis and oxidative metabolism through transcriptional changes during endothelial cell differentiation. In summary, these findings reveal a mitophagy-mediated mechanism for metabolic rewiring and maturation of differentiating cells via the ß-catenin signaling pathway. We propose that such mitochondrial-nuclear cross talk during hiPSC differentiation could be leveraged to enhance the metabolic maturation of differentiated cells.


Assuntos
Reprogramação Celular , Células Endoteliais , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitofagia , Humanos , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Fosfoproteínas Fosfatases/metabolismo , Transcrição Gênica , beta Catenina/metabolismo
2.
Am J Physiol Cell Physiol ; 318(5): C913-C930, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159364

RESUMO

Whole exome sequencing (WES) was used in the research of familial pulmonary arterial hypertension (FPAH). CAV1 and KCNK3 were found as two novel candidate genes of FPAH. However, few pathogenic genes were identified in idiopathic pulmonary arterial hypertension (IPAH). We conducted WES in 20 unrelated IPAH patients who did not carry the known PAH-pathogenic variants among BMPR2, CAV1, KCNK3, SMAD9, ALK1, and ENG. We found a total of 4,950 variants in 3,534 genes, including 4,444 single-nucleotide polymorphisms and 506 insertions/deletions (InDels). Through the comprehensive and multilevel analysis, we disclosed several novel signaling cascades significantly connected to IPAH, including variants related to cadherin signaling pathway, dilated cardiomyopathy, glucose metabolism, immune response, mucin-type O-glycosylation, phospholipase C (PLC)-activating G protein-coupled receptor (GPCR) signaling pathway, vascular contraction and generation, and voltage-dependent Ca2+ channels. We also conducted validation studies in five mutant genes related to PLC-activating GPCR signaling pathway potentially involved in intracellular calcium regulation through Sanger sequencing for mutation accuracy, qRT-PCR for mRNA stability, immunofluorescence for subcellular localization, Western blotting for protein level, Fura-2 imaging for intracellular calcium, and proliferation analysis for cell function. The validation experiments showed that those variants in CCR5 and C3AR1 significantly increased the rise of intracellular calcium and the variant in CCR5 profoundly enhanced proliferative capacity of human pulmonary artery smooth muscle cells. Thus, our study suggests that multiple genetically affected signaling pathways take effect together to cause the formation of IPAH and the development of right heart failure and may further provide new therapy targets or putative clues for the present treatments such as limited therapeutic effectiveness of Ca2+ channel blockers.


Assuntos
Hipertensão Pulmonar Primária Familiar/genética , Insuficiência Cardíaca/genética , Receptores CCR5/genética , Receptores de Complemento/genética , Adulto , Bloqueadores dos Canais de Cálcio/efeitos adversos , Bloqueadores dos Canais de Cálcio/uso terapêutico , Sinalização do Cálcio/genética , Caveolina 1/genética , Proliferação de Células/efeitos dos fármacos , Hipertensão Pulmonar Primária Familiar/tratamento farmacológico , Hipertensão Pulmonar Primária Familiar/patologia , Feminino , Células HEK293 , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas do Tecido Nervoso/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Transdução de Sinais/genética , Sequenciamento do Exoma
3.
Nat Commun ; 10(1): 2126, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073164

RESUMO

Repair of the endothelial cell barrier after inflammatory injury is essential for tissue fluid homeostasis and normalizing leukocyte transmigration. However, the mechanisms of endothelial regeneration remain poorly understood. Here we show that the endothelial and hematopoietic developmental transcription factor Sox17 promotes endothelial regeneration in the endotoxemia model of endothelial injury. Genetic lineage tracing studies demonstrate that the native endothelium itself serves as the primary source of endothelial cells repopulating the vessel wall following injury. We identify Sox17 as a key regulator of endothelial cell regeneration using endothelial-specific deletion and overexpression of Sox17. Endotoxemia upregulates Hypoxia inducible factor 1α, which in turn transcriptionally activates Sox17 expression. We observe that Sox17 increases endothelial cell proliferation via upregulation of Cyclin E1. Furthermore, endothelial-specific upregulation of Sox17 in vivo enhances lung endothelial regeneration. We conclude that endotoxemia adaptively activates Sox17 expression to mediate Cyclin E1-dependent endothelial cell regeneration and restore vascular homeostasis.


Assuntos
Ciclina E/genética , Endotélio Vascular/fisiopatologia , Endotoxemia/patologia , Proteínas HMGB/metabolismo , Proteínas Oncogênicas/genética , Regeneração/imunologia , Fatores de Transcrição SOXF/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Ciclina E/metabolismo , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Endotoxemia/imunologia , Células HEK293 , Proteínas HMGB/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Oncogênicas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXF/genética , Transdução de Sinais/fisiologia , Regulação para Cima
4.
Physiology (Bethesda) ; 33(5): 328-337, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30109825

RESUMO

Hypoxia signaling in the vasculature controls vascular permeability, inflammation, vascular growth, and repair of vascular injury. In this review, we summarize recent insights in this burgeoning field and highlight the importance of studying the heterogeneity of hypoxia responses among individual patients, distinct vascular beds, and even individual vascular cells.


Assuntos
Células Endoteliais/fisiologia , Homeostase/fisiologia , Hipóxia/fisiopatologia , Transdução de Sinais/fisiologia , Animais , Permeabilidade Capilar/fisiologia , Humanos
5.
Mol Biol Cell ; 28(9): 1177-1185, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468941

RESUMO

A heterozygous caveolin-1 c.474delA mutation has been identified in a family with heritable pulmonary arterial hypertension (PAH). This frameshift mutation leads to a caveolin-1 protein that contains all known functional domains but has a change in only the final 20 amino acids of the C-terminus. Here we studied how this mutation alters caveolin-1 function, using patient-derived fibroblasts. Transmission electron microscopy showed that fibroblasts carrying the c.474delA mutation form typical caveolae. Expression of mutated caveolin-1 in caveolin-1-null mouse fibroblasts failed to induce formation of caveolae due to retention of the mutated protein in the endoplasmic reticulum. However, coexpression of wild-type caveolin-1 with mutated caveolin-1 restored the ability to form caveolae. Importantly, fibroblasts carrying the mutation showed twofold increase in proliferation rate associated with hyperphosphorylation of Smad1/5/8. This mutation impaired the antiproliferative function of caveolin-1. Inhibition of type I TGFß receptors ALK1/2/3/6 responsible for phosphorylation of Smad1/5/8 reduced the hyperproliferation seen in c.474delA fibroblasts. These results demonstrate the critical role of the final 20 amino acids of caveolin-1 in modulating fibroblast proliferation by dampening Smad signaling and suggest that augmented Smad signaling and fibroblast hyperproliferation are contributing factors in the pathogenesis of PAH in patients with caveolin-1 c.474delA mutation.


Assuntos
Caveolina 1/genética , Caveolina 1/metabolismo , Hipertensão Pulmonar/metabolismo , Adenina , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Cavéolas/metabolismo , Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Camundongos , Microscopia Eletrônica de Transmissão , Fosforilação , Cultura Primária de Células , Deleção de Sequência/genética , Proteínas Smad Reguladas por Receptor/metabolismo
6.
Circulation ; 135(25): 2505-2523, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28381471

RESUMO

BACKGROUND: The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. METHODS: CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. RESULTS: Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. CONCLUSIONS: Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and erythroblasts in a SOX17-dependent manner. These findings identify the intermediate CD34+ progenitor state as a critical bifurcation point, which can be tuned to generate functional blood vessels or erythrocytes and salvage ischemic tissue.


Assuntos
Antígenos CD34/fisiologia , Desdiferenciação Celular/fisiologia , Células Endoteliais/fisiologia , Eritroblastos/fisiologia , Fibroblastos/fisiologia , Fatores de Transcrição SOXF/fisiologia , Células-Tronco/fisiologia , Animais , Células Cultivadas , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
7.
Mol Biol Cell ; 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298490

RESUMO

A heterozygous Caveolin-1 c.474delA mutation has been identified in a family with heritable pulmonary arterial hypertension (PAH). This frameshift mutation leads to caveolin-1 protein that contains all known functional domains but has a change only in the final 20 amino acids of the C terminus. Here we studied how this mutation alters caveolin-1 function using patient-derived fibroblasts. Transmission electron microscopy showed that fibroblasts carrying the c.474delA mutation formed typical caveolae. Expression of mutated caveolin-1 in caveolin-1-null mouse fibroblasts failed to induce formation of caveolae due to retention of the mutated protein in the endoplasmic reticulum. However, co-expression of wild type caveolin-1 with mutated caveolin-1 restored the ability to form caveolae. Importantly, fibroblasts carrying the mutation showed 2-fold increase in proliferation rate associated with hyper-phosphorylation of Smad1/5/8. This mutation impaired the anti-proliferative function of caveolin-1. Inhibition of type I TGFß receptors ALK1/2/3/6 responsible for phosphorylation of Smad1/5/8 reduced the hyper-proliferation seen in c.474delA fibroblasts. These results demonstrate the critical role of the final 20 amino acids of caveolin-1 in modulating fibroblast proliferation through dampening Smad signaling, and suggest that augmented Smad signaling and fibroblast hyper-proliferation are contributing factors in the pathogenesis of PAH in patients with caveolin-1 c.474delA mutation.

9.
Cell Rep ; 16(2): 323-332, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27346346

RESUMO

The molecular mechanisms underlying the regulation of pluripotency by cellular metabolism in human embryonic stem cells (hESCs) are not fully understood. We found that high levels of glutamine metabolism are essential to prevent degradation of OCT4, a key transcription factor regulating hESC pluripotency. Glutamine withdrawal depletes the endogenous antioxidant glutathione (GSH), which results in the oxidation of OCT4 cysteine residues required for its DNA binding and enhanced OCT4 degradation. The emergence of the OCT4(lo) cell population following glutamine withdrawal did not result in greater propensity for cell death. Instead, glutamine withdrawal during vascular differentiation of hESCs generated cells with greater angiogenic capacity, thus indicating that modulating glutamine metabolism enhances the differentiation and functional maturation of cells. These findings demonstrate that the pluripotency transcription factor OCT4 can serve as a metabolic-redox sensor in hESCs and that metabolic cues can act in concert with growth factor signaling to orchestrate stem cell differentiation.


Assuntos
Glutamina/metabolismo , Células-Tronco Embrionárias Humanas/fisiologia , Fator 3 de Transcrição de Octâmero/fisiologia , Diferenciação Celular , Células Cultivadas , Cisteína/química , DNA/química , Células Endoteliais/fisiologia , Glutationa/metabolismo , Humanos , Neovascularização Fisiológica , Fator 3 de Transcrição de Octâmero/química , Ligação Proteica , Proteólise , Espécies Reativas de Oxigênio/metabolismo
10.
Sci Rep ; 6: 25357, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27150457

RESUMO

Oxygen-sensing pathways executed by the hypoxia-inducible factors (HIFs) induce a cellular adaptive program when oxygen supply becomes limited. However, the role of the HIF oxygen-sensing pathway in the airway response to hypoxic stress in adulthood remains poorly understood. Here we found that in vivo exposure to hypoxia led to a profound increase in bronchial epithelial cell proliferation mainly confined to Club (Clara) cells. Interestingly, this response was executed by hypoxia-inducible factor 2α (HIF2α), which controls the expression of FoxM1, a recognized proliferative factor of Club cells. Furthermore, HIF2α induced the expression of the resistin-like molecules α and ß (RELMα and ß), previously considered bronchial epithelial growth factors. Importantly, despite the central role of HIF2α, this proliferative response was not initiated by in vivo Vhl gene inactivation or pharmacological inhibition of prolyl hydroxylase oxygen sensors, indicating the molecular complexity of this response and the possible participation of other oxygen-sensing pathways. Club cells are principally involved in protection and maintenance of bronchial epithelium. Thus, our findings identify a novel molecular link between HIF2α and Club cell biology that can be regarded as a new HIF2α-dependent mechanism involved in bronchial epithelium adaptation to oxygen fluctuations.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Brônquios/citologia , Oxigênio/metabolismo , Animais , Brônquios/metabolismo , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteína Forkhead Box M1/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
11.
Pulm Circ ; 4(3): 387-94, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25621152

RESUMO

Two defining characteristics of stem cells are their multilineage differentiation potential (multipotency or pluripotency) and their capacity for self-renewal. Growth factors are well-established regulators of stem cell differentiation and self renewal, but less is known about the influence of the metabolic state on stem cell function. Recent studies investigating cellular metabolism during the differentiation of adult stem cells, human embryonic stem cells (ESCs), and induced pluripotent stem cells have demonstrated that activation of specific metabolic pathways depends on the type of stem cells as well as the lineage cells are differentiating into and that these metabolic pathways can influence the differentiation process. However, some common patterns have emerged, suggesting that undifferentiated stem cells primarily rely on glycolysis to meet energy demands. Our own data indicate that undifferentiated ESCs not only exhibit a low mitochondrial membrane potential but also express high levels of the mitochondrial uncoupling protein 2 and of glutamine metabolism regulators when compared with differentiated cells. More importantly, interventions that target stem cell metabolism are able to either prevent or enhance differentiation. These findings suggest that the metabolic state of stem cells is not just a marker of their differentiation status but also plays an active role in regulating stem cell function. Regulatory metabolic pathways in stem cells may thus serve as important checkpoints that can be modulated to direct the regenerative capacity of stem cells.

12.
PLoS One ; 8(10): e77077, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204740

RESUMO

Human mesenchymal stem cells (MSCs) are adult multipotent stem cells which can be isolated from bone marrow, adipose tissue as well as other tissues and have the capacity to differentiate into a variety of mesenchymal cell types such as adipocytes, osteoblasts and chondrocytes. Differentiation of stem cells into mature cell types is guided by growth factors and hormones, but recent studies suggest that metabolic shifts occur during differentiation and can modulate the differentiation process. We therefore investigated mitochondrial biogenesis, mitochondrial respiration and the mitochondrial membrane potential during adipogenic differentiation of human MSCs. In addition, we inhibited mitochondrial function to assess its effects on adipogenic differentiation. Our data show that mitochondrial biogenesis and oxygen consumption increase markedly during adipogenic differentiation, and that reducing mitochondrial respiration by hypoxia or by inhibition of the mitochondrial electron transport chain significantly suppresses adipogenic differentiation. Furthermore, we used a novel approach to suppress mitochondrial activity using a specific siRNA-based knockdown of the mitochondrial transcription factor A (TFAM), which also resulted in an inhibition of adipogenic differentiation. Taken together, our data demonstrates that increased mitochondrial activity is a prerequisite for MSC differentiation into adipocytes. These findings suggest that metabolic modulation of adult stem cells can maintain stem cell pluripotency or direct adult stem cell differentiation.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio , Adipócitos/citologia , Adipogenia , Adulto , Hipóxia Celular , Respiração Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Humanos , Immunoblotting , Potencial da Membrana Mitocondrial , Células-Tronco Mesenquimais/citologia , Microscopia Confocal , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredução , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Handb Exp Pharmacol ; 218: 105-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24092338

RESUMO

World Health Organization category 1 pulmonary hypertension (PH) is a heterogeneous syndrome in which PH originates in the small pulmonary arteries and is therefore also referred to as pulmonary arterial hypertension (PAH). Common pathophysiologic features include endothelial dysfunction, excessive proliferation and impaired apoptosis of vascular cells, and mitochondrial fragmentation. The proliferation/apoptosis imbalance relates in part to activation of the transcription factors hypoxia-inducible factor-1α (HIF-1α) and nuclear factor of activated T-cells (NFAT) and apoptosis repressors, such as survivin. Perivascular inflammation, disruption of adventitial connective tissue, and a glycolytic metabolic shift in vascular cells and right ventricular myocytes also occur in PAH. There are important genetic and epigenetic predispositions to PAH. This review assesses the fidelity of existing animal models to human PAH. No single model can perfectly recapitulate the many diverse forms of PH in Category 1; however, acceptable models exist. PAH induced by monocrotaline and chronic hypoxia plus SU-5416 (CH+SU) in rats display endothelial dysfunction, proliferation/apoptosis imbalance, and develop the glycolytic metabolic profile of human PAH. Histologically, CH+SU best conforms to PAH in that it develops complex vascular lesions, including plexiform lesions. However, the monocrotaline model can be induced to manifest complex vascular lesions and does manifest the tendency of PAH patients to die of right ventricular (RV) failure. Murine models offer greater molecular certainty than rat models but rarely develop significant PH, have less right ventricular hypertrophy (RVH) and pulmonary artery (PA) remodeling, and are harder to image and catheterize. The use of high fidelity catheterization and advanced imaging (microPET-CT, high frequency echocardiography, high field strength MRI) and functional testing (treadmill) permit accurate phenotyping of experimental models of PAH. Preclinical trial design is an important aspect of testing experimental PAH therapies. The use of multiple complementary models with adequate sample size and trial duration and appropriate endpoints are required for preclinical assessment of experimental PAH therapies.


Assuntos
Modelos Animais de Doenças , Hipertensão Pulmonar/etiologia , Animais , Ecocardiografia , Hemodinâmica , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/terapia , Camundongos , Ratos
14.
J Mol Cell Cardiol ; 64: 124-31, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24090675

RESUMO

Successful implantation and long-term survival of engineered tissue grafts hinges on adequate vascularization of the implant. Endothelial cells are essential for patterning vascular structures, but they require supportive mural cells such as pericytes/mesenchymal stem cells (MSCs) to generate stable, functional blood vessels. While there is evidence that the angiogenic effect of MSCs is mediated via the secretion of paracrine signals, the identity of these signals is unknown. By utilizing two functionally distinct human MSC clones, we found that so-called "pericytic" MSCs secrete the pro-angiogenic vascular guidance molecule SLIT3, which guides vascular development by directing ROBO4-positive endothelial cells to form networks in engineered tissue. In contrast, "non-pericytic" MSCs exhibit reduced activation of the SLIT3/ROBO4 pathway and do not support vascular networks. Using live cell imaging of organizing 3D vascular networks, we show that siRNA knockdown of SLIT3 in MSCs leads to disorganized clustering of ECs. Knockdown of its receptor ROBO4 in ECs abolishes the generation of functional human blood vessels in an in vivo xenogenic implant. These data suggest that the SLIT3/ROBO4 pathway is required for MSC-guided vascularization in engineered tissues. Heterogeneity of SLIT3 expression may underlie the variable clinical success of MSCs for tissue repair applications.


Assuntos
Proteínas de Membrana/genética , Neovascularização Fisiológica/genética , Receptores de Superfície Celular/genética , Engenharia Tecidual , Ativação Transcricional , Animais , Comunicação Celular , Movimento Celular , Análise por Conglomerados , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Pericitos/citologia , Pericitos/metabolismo , Fenótipo , Interferência de RNA , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Alicerces Teciduais
15.
Am J Respir Crit Care Med ; 187(8): 865-78, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23449689

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a lethal, female-predominant, vascular disease. Pathologic changes in PA smooth muscle cells (PASMC) include excessive proliferation, apoptosis-resistance, and mitochondrial fragmentation. Activation of dynamin-related protein increases mitotic fission and promotes this proliferation-apoptosis imbalance. The contribution of decreased fusion and reduced mitofusin-2 (MFN2) expression to PAH is unknown. OBJECTIVES: We hypothesize that decreased MFN2 expression promotes mitochondrial fragmentation, increases proliferation, and impairs apoptosis. The role of MFN2's transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), was assessed. MFN2 therapy was tested in PAH PASMC and in models of PAH. METHODS: Fusion and fission mediators were measured in lungs and PASMC from patients with PAH and female rats with monocrotaline or chronic hypoxia+Sugen-5416 (CH+SU) PAH. The effects of adenoviral mitofusin-2 (Ad-MFN2) overexpression were measured in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS: In normal PASMC, siMFN2 reduced expression of MFN2 and PGC1α; conversely, siPGC1α reduced PGC1α and MFN2 expression. Both interventions caused mitochondrial fragmentation. siMFN2 increased proliferation. In rodent and human PAH PASMC, MFN2 and PGC1α were decreased and mitochondria were fragmented. Ad-MFN2 increased fusion, reduced proliferation, and increased apoptosis in human PAH and CH+SU. In CH+SU, Ad-MFN2 improved walking distance (381 ± 35 vs. 245 ± 39 m; P < 0.05); decreased pulmonary vascular resistance (0.18 ± 0.02 vs. 0.38 ± 0.14 mm Hg/ml/min; P < 0.05); and decreased PA medial thickness (14.5 ± 0.8 vs. 19 ± 1.7%; P < 0.05). Lung vascularity was increased by MFN2. CONCLUSIONS: Decreased expression of MFN2 and PGC1α contribute to mitochondrial fragmentation and a proliferation-apoptosis imbalance in human and experimental PAH. Augmenting MFN2 has therapeutic benefit in human and experimental PAH.


Assuntos
GTP Fosfo-Hidrolases/deficiência , Proteínas de Choque Térmico/deficiência , Hipertensão Pulmonar/fisiopatologia , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/deficiência , Fatores de Transcrição/deficiência , Animais , Apoptose/fisiologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Tolerância ao Exercício/efeitos dos fármacos , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Pulmão/citologia , Pulmão/patologia , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/deficiência , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/administração & dosagem , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Atrofia Óptica Autossômica Dominante/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley
16.
Circ Res ; 112(5): 802-15, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23334860

RESUMO

RATIONALE: Closure of the ductus arteriosus (DA) is essential for the transition from fetal to neonatal patterns of circulation. Initial PO2-dependent vasoconstriction causes functional DA closure within minutes. Within days a fibrogenic, proliferative mechanism causes anatomic closure. Though modulated by endothelial-derived vasodilators and constrictors, O2 sensing is intrinsic to ductal smooth muscle cells and oxygen-induced DA constriction persists in the absence of endothelium, endothelin, and cyclooxygenase mediators. O2 increases mitochondrial-derived H2O2, which constricts ductal smooth muscle cells by raising intracellular calcium and activating rho kinase. However, the mechanism by which oxygen changes mitochondrial function is unknown. OBJECTIVE: The purpose of this study was to determine whether mitochondrial fission is crucial for O2-induced DA constriction and closure. METHODS AND RESULTS: Using DA harvested from 30 term infants during correction of congenital heart disease, as well as DA from term rabbits, we demonstrate that mitochondrial fission is crucial for O2-induced constriction and closure. O2 rapidly (<5 minutes) causes mitochondrial fission by a cyclin-dependent kinase- mediated phosphorylation of dynamin-related protein 1 (Drp1) at serine 616. Fission triggers a metabolic shift in the ductal smooth muscle cells that activates pyruvate dehydrogenase and increases mitochondrial H2O2 production. Subsequently, fission increases complex I activity. Mitochondrial-targeted catalase overexpression eliminates PO2-induced increases in mitochondrial-derived H2O2 and cytosolic calcium. The small molecule Drp1 inhibitor, Mdivi-1, and siDRP1 yield concordant results, inhibiting O2-induced constriction (without altering the response to phenylephrine or KCl) and preventing O2-induced increases in oxidative metabolism, cytosolic calcium, and ductal smooth muscle cells proliferation. Prolonged Drp1 inhibition reduces DA closure in a tissue culture model. CONCLUSIONS: Mitochondrial fission is an obligatory, early step in mammalian O2 sensing and offers a promising target for modulating DA patency.


Assuntos
Canal Arterial/fisiologia , GTP Fosfo-Hidrolases/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/fisiologia , Músculo Liso Vascular/fisiologia , Oxigênio/fisiologia , Vasoconstrição/fisiologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Proliferação de Células , Células Cultivadas , Canal Arterial/citologia , Dinaminas , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Recém-Nascido , Masculino , Mitocôndrias/metabolismo , Modelos Animais , Músculo Liso Vascular/citologia , Consumo de Oxigênio/fisiologia , Coelhos , Técnicas de Cultura de Tecidos , Quinases Associadas a rho/metabolismo
17.
Mol Cell ; 48(5): 681-91, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23103253

RESUMO

The mammalian target of rapamycin (mTOR) pathway, which is essential for cell proliferation, is repressed in certain cell types in hypoxia. However, hypoxia-inducible factor 2α (HIF2α) can act as a proliferation-promoting factor in some biological settings. This paradoxical situation led us to study whether HIF2α has a specific effect on mTORC1 regulation. Here we show that activation of the HIF2α pathway increases mTORC1 activity by upregulating expression of the amino acid carrier SLC7A5. At the molecular level we also show that HIF2α binds to the Slc7a5 proximal promoter. Our findings identify a link between the oxygen-sensing HIF2α pathway and mTORC1 regulation, revealing the molecular basis of the tumor-promoting properties of HIF2α in von Hippel-Lindau-deficient cells. We also describe relevant physiological scenarios, including those that occur in liver and lung tissue, wherein HIF2α or low-oxygen tension drive mTORC1 activity and SLC7A5 expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Proteínas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Transportador 1 de Aminoácidos Neutros Grandes/genética , Fígado/metabolismo , Pulmão/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Camundongos SCID , Complexos Multiproteicos , Transplante de Neoplasias , Regiões Promotoras Genéticas , Proteínas/genética , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR , Fatores de Tempo , Transfecção , Carga Tumoral , Regulação para Cima , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
18.
Mol Cell Biol ; 32(13): 2570-84, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22547685

RESUMO

BNip3 localizes to the outer mitochondrial membrane, where it functions in mitophagy and mitochondrial dynamics. While the BNip3 protein is constitutively expressed in adult liver from fed mice, we have shown that its expression is superinduced by fasting of mice, consistent with a role in responses to nutrient deprivation. Loss of BNip3 resulted in increased lipid synthesis in the liver that was associated with elevated ATP levels, reduced AMP-regulated kinase (AMPK) activity, and increased expression of lipogenic enzymes. Conversely, there was reduced ß-oxidation of fatty acids in BNip3 null liver and also defective glucose output under fasting conditions. These metabolic defects in BNip3 null liver were linked to increased mitochondrial mass and increased hepatocellular respiration in the presence of glucose. However, despite elevated mitochondrial mass, an increased proportion of mitochondria exhibited loss of mitochondrial membrane potential, abnormal structure, and reduced oxygen consumption. Elevated reactive oxygen species, inflammation, and features of steatohepatitis were also observed in the livers of BNip3 null mice. These results identify a role for BNip3 in limiting mitochondrial mass and maintaining mitochondrial integrity in the liver that has consequences for lipid metabolism and disease.


Assuntos
Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Jejum/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Gluconeogênese , Glucose/metabolismo , Lipogênese , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Modelos Biológicos , Oxirredução , Consumo de Oxigênio
19.
Circ Res ; 110(11): 1484-97, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22511751

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a lethal syndrome characterized by pulmonary vascular obstruction caused, in part, by pulmonary artery smooth muscle cell (PASMC) hyperproliferation. Mitochondrial fragmentation and normoxic activation of hypoxia-inducible factor-1α (HIF-1α) have been observed in PAH PASMCs; however, their relationship and relevance to the development of PAH are unknown. Dynamin-related protein-1 (DRP1) is a GTPase that, when activated by kinases that phosphorylate serine 616, causes mitochondrial fission. It is, however, unknown whether mitochondrial fission is a prerequisite for proliferation. OBJECTIVE: We hypothesize that DRP1 activation is responsible for increased mitochondrial fission in PAH PASMCs and that DRP1 inhibition may slow proliferation and have therapeutic potential. METHODS AND RESULTS: Experiments were conducted using human control and PAH lungs (n=5) and PASMCs in culture. Parallel experiments were performed in rat lung sections and PASMCs and in rodent PAH models induced by the HIF-1α activator, cobalt, chronic hypoxia, and monocrotaline. HIF-1α activation in human PAH leads to mitochondrial fission by cyclin B1/CDK1-dependent phosphorylation of DRP1 at serine 616. In normal PASMCs, HIF-1α activation by CoCl(2) or desferrioxamine causes DRP1-mediated fission. HIF-1α inhibition reduces DRP1 activation, prevents fission, and reduces PASMC proliferation. Both the DRP1 inhibitor Mdivi-1 and siDRP1 prevent mitotic fission and arrest PAH PASMCs at the G2/M interphase. Mdivi-1 is antiproliferative in human PAH PASMCs and in rodent models. Mdivi-1 improves exercise capacity, right ventricular function, and hemodynamics in experimental PAH. CONCLUSIONS: DRP-1-mediated mitotic fission is a cell-cycle checkpoint that can be therapeutically targeted in hyperproliferative disorders such as PAH.


Assuntos
Proliferação de Células , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Hipertensão Pulmonar/enzimologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Musculares/enzimologia , Proteínas Mitocondriais/metabolismo , Mitose , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Animais , Anti-Hipertensivos/farmacologia , Proteína Quinase CDC2/metabolismo , Estudos de Casos e Controles , Pontos de Checagem do Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cobalto , Ciclina B1/metabolismo , Modelos Animais de Doenças , Dinaminas/genética , Ativação Enzimática , Hipertensão Pulmonar Primária Familiar , GTP Fosfo-Hidrolases/genética , Terapia Genética/métodos , Glicólise , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/terapia , Hipóxia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/patologia , Proteínas Mitocondriais/genética , Mitose/efeitos dos fármacos , Monocrotalina , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fosforilação , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Quinazolinonas/farmacologia , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Serina , Fatores de Tempo , Transfecção
20.
FASEB J ; 26(5): 2175-86, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22321727

RESUMO

Mitochondria exist in dynamic networks that undergo fusion and fission. Mitochondrial fusion and fission are mediated by several GTPases in the outer mitochondrial membrane, notably mitofusin-2 (Mfn-2), which promotes fusion, and dynamin-related protein (Drp-1), which promotes fission. We report that human lung cancer cell lines exhibit an imbalance of Drp-1/Mfn-2 expression, which promotes a state of mitochondrial fission. Lung tumor tissue samples from patients demonstrated a similar increase in Drp-1 and decrease in Mfn-2 when compared to adjacent healthy lung. Complementary approaches to restore mitochondrial network formation in lung cancer cells by overexpression of Mfn-2, Drp-1 inhibition, or Drp-1 knockdown resulted in a marked reduction of cancer cell proliferation and an increase in spontaneous apoptosis. The number of cancer cells in S phase decreased from 32.4 ± 0.6 to 6.4 ± 0.3% with Drp-1 inhibition (P<0.001). In a xenotransplantation model, Mfn-2 gene therapy or Drp-1 inhibition could regress tumor growth. The tumor volume decreased from 205.6 ± 59 to 70.6 ± 15 mm(3) (P<0.05) with Mfn-2 overexpression and from 186.0 ± 19 to 87.0 ± 6 mm(3) (P<0.01) with therapeutic Drp-1 inhibition. Impaired fusion and enhanced fission contribute fundamentally to the proliferation/apoptosis imbalance in cancer and constitute promising novel therapeutic targets.


Assuntos
Ciclo Celular , Neoplasias Pulmonares/patologia , Mitocôndrias/fisiologia , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons , Reação em Cadeia da Polimerase em Tempo Real , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...