Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 114(5): 742-761, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32654271

RESUMO

Efficient symbiotic colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri depends on bacterial biofilm formation on the surface of the squid's light organ. Subsequently, the bacteria disperse from the biofilm via an unknown mechanism and enter through pores to reach the interior colonization sites. Here, we identify a homolog of Pseudomonas fluorescens LapG as a dispersal factor that promotes cleavage of a biofilm-promoting adhesin, LapV. Overproduction of LapG inhibited biofilm formation and, unlike the wild-type parent, a ΔlapG mutant formed biofilms in vitro. Although V. fischeri encodes two putative large adhesins, LapI (near lapG on chromosome II) and LapV (on chromosome I), only the latter contributed to biofilm formation. Consistent with the Pseudomonas Lap system model, our data support a role for the predicted c-di-GMP-binding protein LapD in inhibiting LapG-dependent dispersal. Furthermore, we identified a phosphodiesterase, PdeV, whose loss promotes biofilm formation similar to that of the ΔlapG mutant and dependent on both LapD and LapV. Finally, we found a minor defect for a ΔlapD mutant in initiating squid colonization, indicating a role for the Lap system in a relevant environmental niche. Together, these data reveal new factors and provide important insights into biofilm dispersal by V. fischeri.


Assuntos
Adesinas Bacterianas/metabolismo , Aliivibrio fischeri/metabolismo , Biofilmes/crescimento & desenvolvimento , Aliivibrio fischeri/genética , Animais , Proteínas de Bactérias/metabolismo , Decapodiformes/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Simbiose
2.
J Bacteriol ; 201(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30782629

RESUMO

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen capable of causing severe disease in immunocompromised individuals. A major P. aeruginosa virulence factor is the type III secretion system (T3SS). The T3SS is used to translocate effector proteins into host cells, causing cytotoxicity. The T3SS is under the transcriptional control of the master regulator ExsA. ExsA is encoded in the exsCEBA operon and autoregulates transcription via the P exsC promoter. There is also a Vfr-dependent promoter (P exsA ) located in the intergenic region between exsB and exsA A previous chromatin immunoprecipitation (ChIP)-on-chip experiment identified strong binding signatures for MvaT and MvaU in the intergenic region containing the P exsA promoter. MvaT and MvaU are DNA-binding histone-like nucleoid-structuring proteins that can repress gene expression. As predicted from the previous ChIP data, purified MvaT specifically bound to the P exsA promoter region in electrophoretic mobility shift assays. Whereas disruption of mvaT or mvaU by either transposon insertion or clustered regularly interspaced short palindromic repeat interference (CRISPRi) derepressed P exsA promoter activity and T3SS gene expression, overexpression of MvaT or MvaU inhibited P exsA promoter activity. Disruption of mvaT, however, did not suppress the Vfr requirement for P exsA promoter activity. Mutated MvaT/MvaU defective in transcriptional silencing exhibited dominant negative activity, resulting in a significant increase in P exsA promoter activity. Because no effect of MvaT or MvaU on Vfr expression was detected, we propose a model in which the primary effect of MvaT/MvaU on T3SS gene expression is through direct silencing of the P exsA promoter.IMPORTANCE Global regulatory systems play a prominent role in controlling the P. aeruginosa T3SS and include the Gac/RsmA, c-di-GMP, and Vfr-cAMP signaling pathways. Many of these pathways appear to directly or indirectly influence exsA transcription or translation. In this study, the histone-like proteins MvaT and MvaU are added to the growing list of global regulators that control the T3SS. MvaT and MvaU bind AT-rich regions in the genome and silence xenogeneic genes, including pathogenicity islands. The T3SS gene cluster has been horizontally transmitted among many Gram-negative pathogens. Control by MvaT/MvaU may reflect a residual effect that has persisted since the initial acquisition of the gene cluster, subsequently imposing a requirement for active regulatory mechanisms to override MvaT/MvaU-mediated silencing.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Transativadores/genética , Sistemas de Secreção Tipo III/genética , Inativação Gênica , Família Multigênica , Regiões Promotoras Genéticas , Transcrição Gênica , Fatores de Virulência/genética
3.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030225

RESUMO

Biofilms, complex communities of microorganisms surrounded by a self-produced matrix, facilitate attachment and provide protection to bacteria. A natural model used to study biofilm formation is the symbiosis between Vibrio fischeri and its host, the Hawaiian bobtail squid, Euprymna scolopes Host-relevant biofilm formation is a tightly regulated process and is observed in vitro only with strains that have been genetically manipulated to overexpress or disrupt specific regulators, primarily two-component signaling (TCS) regulators. These regulators control biofilm formation by dictating the production of the symbiosis polysaccharide (Syp-PS), the major component of the biofilm matrix. Control occurs both at and below the level of transcription of the syp genes, which are responsible for Syp-PS production. Here, we probed the roles of the two known negative regulators of biofilm formation, BinK and SypE, by generating double mutants. We also mapped and evaluated a point mutation using natural transformation and linkage analysis. We examined traditional biofilm formation phenotypes and established a new assay for evaluating the start of biofilm formation in the form of microscopic aggregates in shaking liquid cultures, in the absence of the known biofilm-inducing signal calcium. We found that wrinkled colony formation is negatively controlled not only by BinK and SypE but also by SypF. SypF is both required for and inhibitory to biofilm formation. Together, these data reveal that these three regulators are sufficient to prevent wild-type V. fischeri from forming biofilms under these conditions.IMPORTANCE Bacterial biofilms promote attachment to a variety of surfaces and protect the constituent bacteria from environmental stresses, including antimicrobials. Understanding the mechanisms by which biofilms form will promote our ability to resolve them when they occur in the context of an infection. In this study, we found that Vibrio fischeri tightly controls biofilm formation using three negative regulators; the presence of a single one of these regulators was sufficient to prevent full biofilm development, while disruption of all three permitted robust biofilm formation. This work increases our understanding of the functions of specific regulators and demonstrates the substantial negative control that one benign microbe exerts over biofilm formation, potentially to ensure that it occurs only under the appropriate conditions.


Assuntos
Aliivibrio fischeri/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes , Decapodiformes/microbiologia , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Aliivibrio fischeri/enzimologia , Aliivibrio fischeri/genética , Animais , Proteínas de Bactérias/genética , Havaí , Histidina Quinase/genética , Monoéster Fosfórico Hidrolases/genética , Simbiose
4.
PLoS One ; 12(1): e0169521, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28122010

RESUMO

Vibrio fischeri, a marine bacterium and symbiont of the Hawaiian bobtail squid Euprymna scolopes, depends on biofilm formation for successful colonization of the squid's symbiotic light organ. Here, we investigated if culture conditions, such as nutrient and salt availability, affect biofilm formation by V. fischeri by testing the formation of wrinkled colonies on solid media. We found that V. fischeri forms colonies with more substantial wrinkling when grown on the nutrient-dense LBS medium containing NaCl relative to those formed on the more nutrient-poor, seawater-salt containing SWT medium. The presence of both tryptone and yeast extract was necessary for the production of "normal" wrinkled colonies; when grown on tryptone alone, the colonies displayed a divoting phenotype and were attached to the agar surface. We also found that the type and concentration of specific seawater salts influenced the timing of biofilm formation. Of the conditions assayed, wrinkled colony formation occurred earliest in LBS(-Tris) media containing 425 mM NaCl, 35 mM MgSO4, and 5 mM CaCl2. Pellicle formation, another measure of biofilm development, was also enhanced in these growth conditions. Therefore, both nutrient and salt availability contribute to V. fischeri biofilm formation. While growth was unaffected, these optimized conditions resulted in increased syp locus expression as measured by a PsypA-lacZ transcriptional reporter. We anticipate these studies will help us understand how the natural environment of V. fischeri affects its ability to form biofilms and, ultimately, colonize E. scolopes.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Ágar , Aliivibrio fischeri/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Meios de Cultura
5.
J Bacteriol ; 198(9): 1442-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26929300

RESUMO

UNLABELLED: The Pseudomonas aeruginosa cyclic AMP (cAMP)-Vfr system (CVS) is a global regulator of virulence gene expression. Regulatory targets include type IV pili, secreted proteases, and the type III secretion system (T3SS). The mechanism by which CVS regulates T3SS gene expression remains undefined. Single-cell expression studies previously found that only a portion of the cells within a population express the T3SS under inducing conditions, a property known as bistability. We now report that bistability is altered in avfr mutant, wherein a substantially smaller fraction of the cells express the T3SS relative to the parental strain. Since bistability usually involves positive-feedback loops, we tested the hypothesis that virulence factor regulator (Vfr) regulates the expression of exsA ExsA is the central regulator of T3SS gene expression and autoregulates its own expression. Although exsA is the last gene of the exsCEBA polycistronic mRNA, we demonstrate that Vfr directly activates exsA transcription from a second promoter (PexsA) located immediately upstream of exsA PexsA promoter activity is entirely Vfr dependent. Direct binding of Vfr to a PexsA promoter probe was demonstrated by electrophoretic mobility shift assays, and DNase I footprinting revealed an area of protection that coincides with a putative Vfr consensus-binding site. Mutagenesis of that site disrupted Vfr binding and PexsA promoter activity. We conclude that Vfr contributes to T3SS gene expression through activation of the PexsA promoter, which is internal to the previously characterized exsCEBA operon. IMPORTANCE: Vfr is a cAMP-dependent DNA-binding protein that functions as a global regulator of virulence gene expression in Pseudomonas aeruginosa Regulation by Vfr allows for the coordinate production of related virulence functions, such as type IV pili and type III secretion, required for adherence to and intoxication of host cells, respectively. Although the molecular mechanism of Vfr regulation has been defined for many target genes, a direct link between Vfr and T3SS gene expression had not been established. In the present study, we report that Vfr directly controls exsA transcription, the master regulator of T3SS gene expression, from a newly identified promoter located immediately upstream of exsA.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Pseudomonas aeruginosa/genética , Transativadores/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Proteína Receptora de AMP Cíclico/genética , Pegada de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica , Óperon , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/metabolismo , Fatores de Virulência/genética
6.
Antimicrob Agents Chemother ; 60(2): 766-76, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26574012

RESUMO

The Pseudomonas aeruginosa type III secretion system (T3SS) is a primary virulence determinant and a potential target for antivirulence drugs. One candidate target is ExsA, a member of the AraC family of DNA-binding proteins required for expression of the T3SS. A previous study identified small molecules based on an N-hydroxybenzimidazole scaffold that inhibit the DNA-binding activity of several AraC proteins, including ExsA. In this study, we further characterized a panel of N-hydroxybenzimidazoles. The half-maximal inhibitory concentrations (IC50s) for the tested N-hydroxybenzimidazoles ranged from 8 to 45 µM in DNA-binding assays. Each of the N-hydroxybenzimidazoles protected mammalian cells from T3SS-dependent cytotoxicity, and protection correlated with reduced T3SS gene expression in a coculture infection model. Binding studies with the purified ExsA DNA-binding domain (i.e., lacking the amino-terminal self-association domain) confirmed that the activity of N-hydroxybenzimidazoles results from interactions with the DNA-binding domain. The interaction is specific, as an unrelated DNA-binding protein (Vfr) was unaffected by N-hydroxybenzimidazoles. ExsA homologs that control T3SS gene expression in Yersinia pestis, Aeromonas hydrophila, and Vibrio parahaemolyticus were also sensitive to N-hydroxybenzimidazoles. Although ExsA and Y. pestis LcrF share 79% sequence identity in the DNA-binding domain, differential sensitivities to several of the N-hydroxybenzimidazoles were observed. Site-directed mutagenesis based on in silico docking of inhibitors to the DNA-binding domain, and on amino acid differences between ExsA and LcrF, resulted in the identification of several substitutions that altered the sensitivity of ExsA to N-hydroxybenzimidazoles. Development of second-generation compounds targeted to the same binding pocket could lead to drugs with improved pharmacological properties.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Benzimidazóis/farmacologia , Proteínas de Ligação a DNA/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Sistemas de Secreção Tipo III/antagonistas & inibidores , Sequência de Aminoácidos , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/genética , Sítios de Ligação , Proteína Receptora de AMP Cíclico/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Proteínas Recombinantes de Fusão , Transativadores/genética , Yersinia pestis/genética
7.
J Bacteriol ; 196(20): 3546-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070741

RESUMO

ExsA is a member of the AraC/XylS family of transcriptional regulators and is required for expression of the Pseudomonas aeruginosa type III secretion system (T3SS). All P. aeruginosa T3SS promoters contain two adjacent binding sites for monomeric ExsA. The amino-terminal domain of ExsA (NTD) is thought to mediate interactions between the ExsA monomers bound to each site. Threading the NTD onto the AraC backbone revealed an α-helix that likely serves as the primary determinant for dimerization. In this study, we performed alanine scanning mutagenesis of the ExsA α-helix (residues 136 to 152) to identify determinants required for self-association. Residues L137, C139, L140, K141, and L148 exhibited self-association defects and were required for maximal activation by ExsA. Disruption of self-association resulted in decreased binding to T3SS promoters, particularly loss of binding by the second ExsA monomer. Removing the NTD or increasing the space between the ExsA-binding sites restored the ability of the second ExsA monomer to bind the PexsC promoter. This finding indicated that, in the absence of self-association, the NTD prevents binding by a second monomer. Similar findings were seen with the PexoT promoter; however, binding of the second ExsA monomer in the absence of self-association also required the presence of a high-affinity site 2. Based on these data, ExsA self-association is necessary to overcome inhibition by the NTD and to compensate for low-affinity binding sites, thereby allowing for full occupation and activation of ExsA-dependent promoters. Therefore, ExsA self-association is indispensable and provides an attractive target for antivirulence therapies.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas aeruginosa/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Transporte Proteico , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/química , Transativadores/genética
8.
FEBS J ; 280(4): 1084-94, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23279839

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa ranks among the leading causes of nosocomial infection. The type III secretion system (T3SS) aids acute Pseudomonas aeruginosa infection by injecting potent cytotoxins into host cells to suppress the host's innate immune response. Expression of all T3SS-related genes is strictly dependent on the transcription factor ExsA. Consequently, ExsA and the biological processes that regulate ExsA function are of great biomedical interest. The present study focused on the ExsA-ExsC-ExsD-ExsE signaling cascade, which ties host cell contact to the upregulation of T3SS gene expression. Prior to T3SS induction, the antiactivator protein ExsD binds to ExsA and blocks ExsA-dependent transcription by interfering with ExsA dimerization and promoter interactions. Upon host cell contact, ExsD is sequestered by the T3SS chaperone ExsC, resulting in the release of ExsA and upregulation of the T3SS. Previous studies have shown that the ExsD-ExsA interactions are not freely reversible. Because independently folded ExsD and ExsA were not found to interact, it has been hypothesized that folding intermediates of the two proteins form the complex. Here, we demonstrate, for the first time, that ExsD alone is sufficient to inhibit ExsA-dependent transcription in vitro and that no other cellular factors are required. More significantly, we show that independently folded ExsD and ExsA are capable of interacting, but only at 37 °C and not at 30 °C. Guided by the crystal structure of ExsD, we designed a monomeric variant of the protein, and demonstrated that ExsD trimerization prevents ExsD from inhibiting ExsA-dependent transcription at 30 °C. We propose that this unique mechanism plays an important role in T3SS regulation.


Assuntos
Proteínas de Bactérias/química , Multimerização Proteica , Pseudomonas aeruginosa/genética , Proteínas Repressoras/química , Transativadores/química , Sistemas de Secreção Bacterianos , Regulação Bacteriana da Expressão Gênica , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Transcrição Gênica
9.
J Bacteriol ; 194(10): 2564-72, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22408165

RESUMO

Transcription of the Pseudomonas aeruginosa type III secretion system is controlled by ExsA, a member of the AraC/XylS family of regulators. Each ExsA-dependent promoter contains two adjacent binding sites for monomeric ExsA. The promoter-proximal site (binding site 1) consists of highly conserved GnC and TGnnA sequences that are individually recognized by the two helix-turn-helix (HTH) DNA-binding motifs of an ExsA monomer. While the GnC and TGnnA sequences are important for binding to site 1, the promoter-distal binding sites (site 2) lack obvious similarity among themselves or with binding site 1. In the present study, we demonstrate that site 2 in the P(exsC) promoter region contains a GnC sequence that is functionally equivalent to the GnC in site 1 and recognized by the first HTH motif of an ExsA monomer. Likewise, the second HTH interacts with an adenine residue in binding site 2. Although several candidate GnC sequences are also present in site 2 of the P(exsD), P(exoT), and P(pcrG) promoters, the GnC sequences were not required for ExsA-dependent transcription or ExsA binding. A comparison of hybrid promoters composed of binding site 2 from one promoter fused to binding site 1 derived from another promoter indicates that ExsA-binding affinity, promoter strength, and the degree of promoter bending are properties that are largely determined by binding site 2. Based on these data, we propose that the manner in which ExsA interacts with binding site 2 at the P(exsC) promoter is distinct from the interactions occurring at other promoters.


Assuntos
Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas/genética , Pseudomonas aeruginosa/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica/fisiologia , Mutagênese , Mutação , Ligação Proteica , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/genética
10.
J Bacteriol ; 194(10): 2573-85, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22408167

RESUMO

ExsA is a transcriptional activator of the Pseudomonas aeruginosa type III secretion system (T3SS) and a member of the AraC/XylS protein family. Each of the 10 ExsA-dependent promoter regions that define the T3SS regulon has two adjacent binding sites for monomeric ExsA. Whereas the promoter-proximal sites (binding site 1) contain highly conserved GnC and TGnnA sequences that are separated by ∼10 bp, the promoter-distal sites (binding site 2) share no obvious sequence similarity to each other or to the binding site 1 consensus. In the present study, we used footprinting with Fe-BABE (a protein-labeling reagent that can be conjugated to cysteine residues) to demonstrate that the two ExsA monomers bind to the P(exsC), P(exsD), P(exoT), and P(pcrG) promoters in a head-to-tail orientation. The footprinting data further indicate that the conserved GnC and TGnnA sequences constitute binding site 1. When bound to site 1, the first helix-turn-helix (HTH) motif of ExsA interacts with the conserved GnC sequence, and the second HTH interacts at or near the TGnnA sequences. Genetic data using the P(exoT) promoter indicate that residues L198 and T199 in the first HTH motif of ExsA contact the guanine in the GnC sequence and that residue K202, also in the first HTH motif, contacts the cytosine. Likewise, evidence is presented that residues Q248, Y250, T252, and R257 located in the second HTH motif contribute to the recognition of the TGnnA sequence. These combined data define interactions of ExsA with site 1 on the P(exoT) promoter and provide insight into the nature of the interactions involved in recognition of binding site 2.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Pseudomonas aeruginosa/metabolismo , Transativadores/metabolismo , ADP Ribose Transferases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Proteínas Ativadoras de GTPase/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...