Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Diabetologia ; 67(6): 1079-1094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38512414

RESUMO

AIMS/HYPOTHESIS: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS: Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.


Assuntos
Ilhas de CpG , Metilação de DNA , Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Animais , Camundongos , Ilhas de CpG/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Transgênicos , DNA Metiltransferase 3A/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina/fisiologia
2.
Diabetologia ; 67(5): 908-927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409439

RESUMO

AIMS/HYPOTHESIS: The proinflammatory cytokines IFN-α, IFN-γ, IL-1ß and TNF-α may contribute to innate and adaptive immune responses during insulitis in type 1 diabetes and therefore represent attractive therapeutic targets to protect beta cells. However, the specific role of each of these cytokines individually on pancreatic beta cells remains unknown. METHODS: We used deep RNA-seq analysis, followed by extensive confirmation experiments based on reverse transcription-quantitative PCR (RT-qPCR), western blot, histology and use of siRNAs, to characterise the response of human pancreatic beta cells to each cytokine individually and compared the signatures obtained with those present in islets of individuals affected by type 1 diabetes. RESULTS: IFN-α and IFN-γ had a greater impact on the beta cell transcriptome when compared with IL-1ß and TNF-α. The IFN-induced gene signatures have a strong correlation with those observed in beta cells from individuals with type 1 diabetes, and the level of expression of specific IFN-stimulated genes is positively correlated with proteins present in islets of these individuals, regulating beta cell responses to 'danger signals' such as viral infections. Zinc finger NFX1-type containing 1 (ZNFX1), a double-stranded RNA sensor, was identified as highly induced by IFNs and shown to play a key role in the antiviral response in beta cells. CONCLUSIONS/INTERPRETATION: These data suggest that IFN-α and IFN-γ are key cytokines at the islet level in human type 1 diabetes, contributing to the triggering and amplification of autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Interferons/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interferon gama/metabolismo , Ilhotas Pancreáticas/metabolismo
3.
bioRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38076935

RESUMO

Aims/hypothesis: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly-connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility which we explore here by focussing on the imprinted gene neuronatin (Nnat), which is required for normal insulin synthesis and secretion. Methods: Single cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing eGFP under the control of the Nnat enhancer/promoter regions were generated for fluorescence-activated cell (FAC) sorting of beta cells and downstream analysis of CpG methylation by bisulphite and RNA sequencing, respectively. Animals deleted for the de novo methyltransferase, DNMT3A from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 and Cal-590. Insulin secretion was measured using Homogeneous Time Resolved Fluorescence Imaging. Results: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic data sets demonstrated the early establishment of Nnat-positive and negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a sub-population specialised for insulin production, reminiscent of recently-described "ßHI" cells and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialization. Conclusions/interpretation: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may thus contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes.

4.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745505

RESUMO

Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but its effect on the repertoire of HLA Class I (HLA-I)-bound peptides presented by pancreatic ß-cells is unknown. Using immunopeptidomics, we characterized the peptide/HLA-I presentation in in-vitro resting and IFN-α-exposed ß-cells. IFN-α increased HLA-I expression and peptide presentation, including neo-sequences derived from alternative mRNA splicing, post-translational modifications - notably glutathionylation - and protein cis-splicing. This antigenic landscape relied on processing by both the constitutive and immune proteasome. The resting ß-cell immunopeptidome was dominated by HLA-A-restricted ligands. However, IFN-α only marginally upregulated HLA-A and largely favored HLA-B, translating into a major increase in HLA-B-restricted peptides and into an increased activation of HLA-B-restricted vs. HLA-A-restricted CD8+ T-cells. A preferential HLA-B hyper-expression was also observed in the islets of T1D vs. non-diabetic donors, and we identified islet-infiltrating CD8+ T-cells from T1D donors reactive to HLA-B-restricted granule peptides. Thus, the inflammatory milieu of insulitis may skew the autoimmune response toward epitopes presented by HLA-B, hence recruiting a distinct T-cell repertoire that may be relevant to T1D pathogenesis.

5.
Diabetes Metab Res Rev ; 39(8): e3696, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37466955

RESUMO

AIMS: Angiotensin I-converting enzyme type 2 (ACE2), a pivotal SARS-CoV-2 receptor, has been shown to be expressed in multiple cells, including human pancreatic beta-cells. A putative bidirectional relationship between SARS-CoV-2 infection and diabetes has been suggested, confirming the hypothesis that viral infection in beta-cells may lead to new-onset diabetes or worse glycometabolic control in diabetic patients. However, whether ACE2 expression levels are altered in beta-cells of diabetic patients has not yet been investigated. Here, we aimed to elucidate the in situ expression pattern of ACE2 in Type 2 diabetes (T2D) with respect to non-diabetic donors which may account for a higher susceptibility to SARS-CoV-2 infection in beta-cells. MATERIAL AND METHODS: Angiotensin I-converting enzyme type 2 immunofluorescence analysis using two antibodies alongside insulin staining was performed on formalin-fixed paraffin embedded pancreatic sections obtained from n = 20 T2D and n = 20 non-diabetic (ND) multiorgan donors. Intensity and colocalisation analyses were performed on a total of 1082 pancreatic islets. Macrophage detection was performed using anti-CD68 immunohistochemistry on serial sections from the same donors. RESULTS: Using two different antibodies, ACE2 expression was confirmed in beta-cells and in pancreas microvasculature. Angiotensin I-converting enzyme type 2 expression was increased in pancreatic islets of T2D donors in comparison to ND controls alongside with a higher colocalisation rate between ACE2 and insulin using both anti-ACE2 antibodies. CD68+ cells tended to be increased in T2D pancreata, in line with higher ACE2 expression observed in serial sections. CONCLUSIONS: Higher ACE2 expression in T2D islets might increase their susceptibility to SARS-CoV-2 infection during COVID-19 in T2D patients, thus worsening glycometabolic outcomes and disease severity.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Peptidil Dipeptidase A
6.
Diabetologia ; 66(7): 1273-1288, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148359

RESUMO

AIMS/HYPOTHESIS: The Latino population has been systematically underrepresented in large-scale genetic analyses, and previous studies have relied on the imputation of ungenotyped variants based on the 1000 Genomes (1000G) imputation panel, which results in suboptimal capture of low-frequency or Latino-enriched variants. The National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) released the largest multi-ancestry genotype reference panel representing a unique opportunity to analyse rare genetic variations in the Latino population. We hypothesise that a more comprehensive analysis of low/rare variation using the TOPMed panel would improve our knowledge of the genetics of type 2 diabetes in the Latino population. METHODS: We evaluated the TOPMed imputation performance using genotyping array and whole-exome sequence data in six Latino cohorts. To evaluate the ability of TOPMed imputation to increase the number of identified loci, we performed a Latino type 2 diabetes genome-wide association study (GWAS) meta-analysis in 8150 individuals with type 2 diabetes and 10,735 control individuals and replicated the results in six additional cohorts including whole-genome sequence data from the All of Us cohort. RESULTS: Compared with imputation with 1000G, the TOPMed panel improved the identification of rare and low-frequency variants. We identified 26 genome-wide significant signals including a novel variant (minor allele frequency 1.7%; OR 1.37, p=3.4 × 10-9). A Latino-tailored polygenic score constructed from our data and GWAS data from East Asian and European populations improved the prediction accuracy in a Latino target dataset, explaining up to 7.6% of the type 2 diabetes risk variance. CONCLUSIONS/INTERPRETATION: Our results demonstrate the utility of TOPMed imputation for identifying low-frequency variants in understudied populations, leading to the discovery of novel disease associations and the improvement of polygenic scores. DATA AVAILABILITY: Full summary statistics are available through the Common Metabolic Diseases Knowledge Portal ( https://t2d.hugeamp.org/downloads.html ) and through the GWAS catalog ( https://www.ebi.ac.uk/gwas/ , accession ID: GCST90255648). Polygenic score (PS) weights for each ancestry are available via the PGS catalog ( https://www.pgscatalog.org , publication ID: PGP000445, scores IDs: PGS003443, PGS003444 and PGS003445).


Assuntos
Diabetes Mellitus Tipo 2 , Saúde da População , Humanos , Estudo de Associação Genômica Ampla , Diabetes Mellitus Tipo 2/genética , Medicina de Precisão , Genótipo , Hispânico ou Latino/genética , Polimorfismo de Nucleotídeo Único/genética
7.
Diabetologia ; 66(8): 1544-1556, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36988639

RESUMO

AIMS/HYPOTHESIS: TNF-α plays a role in pancreatic beta cell loss in type 1 diabetes mellitus. In clinical interventions, TNF-α inhibition preserves C-peptide levels in early type 1 diabetes. In this study we evaluated the crosstalk of TNF-α, as compared with type I IFNs, with the type 1 diabetes candidate gene PTPN2 (encoding protein tyrosine phosphatase non-receptor type 2 [PTPN2]) in human beta cells. METHODS: EndoC-ßH1 cells, dispersed human pancreatic islets or induced pluripotent stem cell (iPSC)-derived islet-like cells were transfected with siRNAs targeting various genes (siCTRL, siPTPN2, siJNK1, siJNK3 or siBIM). Cells were treated for 48 h with IFN-α (2000 U/ml) or TNF-α (1000 U/ml). Cell death was evaluated using Hoechst 33342 and propidium iodide staining. mRNA levels were assessed by quantitative reverse transcription PCR (qRT-PCR) and protein expression by immunoblot. RESULTS: PTPN2 silencing sensitised beta cells to cytotoxicity induced by IFN-α and/or TNF-α by 20-50%, depending on the human cell model utilised; there was no potentiation between the cytokines. We silenced c-Jun N-terminal kinase (JNK)1 or Bcl-2-like protein 2 (BIM), and this abolished the proapoptotic effects of IFN-α, TNF-α or the combination of both after PTPN2 inhibition. We further observed that PTPN2 silencing increased TNF-α-induced JNK1 and BIM phosphorylation and that JNK3 is necessary for beta cell resistance to IFN-α cytotoxicity. CONCLUSIONS/INTERPRETATION: We show that the type 1 diabetes candidate gene PTPN2 is a key regulator of the deleterious effects of TNF-α in human beta cells. It is conceivable that people with type 1 diabetes carrying risk-associated PTPN2 polymorphisms may particularly benefit from therapies inhibiting TNF-α.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/farmacologia , Citocinas/metabolismo , Morte Celular , Células Secretoras de Insulina/metabolismo , Interferon-alfa/farmacologia
8.
Front Endocrinol (Lausanne) ; 14: 1101934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824360

RESUMO

Introduction: Most of the disease-associated single nucleotide polymorphisms (SNPs) lie in non- coding regions of the human genome. Many of these variants have been predicted to impact the expression and function of long non-coding RNAs (lncRNA), but the contribution of these molecules to the development of complex diseases remains to be clarified. Methods: Here, we performed a genetic association study between a SNP located in a lncRNA known as LncTGM2 and the risk of developing type 2 diabetes (T2D), and analyzed its implication in disease pathogenesis at pancreatic beta cell level. Genetic association study was performed on human samples linking the rs2076380 polymorphism with T2D and glycemic traits. The pancreatic beta cell line EndoC-bH1 was employed for functional studies based on LncTGM2 silencing and overexpression experiments. Human pancreatic islets were used for eQTL analysis. Results: We have identified a genetic association between LncTGM2 and T2D risk. Functional characterization of the LncTGM2 revealed its implication in the transcriptional regulation of TGM2, coding for a transglutaminase. The T2Dassociated risk allele in LncTGM2 disrupts the secondary structure of this lncRNA, affecting its stability and the expression of TGM2 in pancreatic beta cells. Diminished LncTGM2 in human beta cells impairs glucose-stimulated insulin release. Conclusions: These findings provide novel information on the molecular mechanisms by which T2D-associated SNPs in lncRNAs may contribute to disease, paving the way for the development of new therapies based on the modulation of lncRNAs.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , RNA Longo não Codificante , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
NAR Genom Bioinform ; 4(4): lqac084, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36415826

RESUMO

A sensible control of hormone secretion from pancreatic islets requires concerted inter-cellular communications, but a comprehensive picture of the whole islet interactome is presently missing. Single-cell transcriptomics allows to overcome this and we used here a single-cell dataset from type 2 diabetic (T2D) and non-diabetic (ND) donors to leverage islet interaction networks. The single-cell dataset contains 3046 cells classified in 7 cell types. The interactions across cell types in T2D and ND were obtained and resulting networks analysed to identify high-centrality genes and altered interactions in T2D. The T2D interactome displayed a higher number of interactions (10 787) than ND (9707); 1289 interactions involved beta cells (1147 in ND). High-centrality genes included EGFR, FGFR1 and FGFR2, important for cell survival and proliferation. In conclusion, this analysis represents the first in silico model of the human islet interactome, enabling the identification of signatures potentially relevant for T2D pathophysiology.

10.
iScience ; 25(11): 105376, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36345338

RESUMO

Target tissues of autoimmune and degenerative diseases show signals of inflammation. We used publicly available RNA-seq data to study whether pancreatic ß-cells in type 1 and type 2 diabetes and neuronal tissue in multiple sclerosis and Alzheimer's disease share inflammatory gene signatures. We observed concordantly upregulated genes in pairwise diseases, many of them related to signaling by interleukins and interferons. We next mined these signatures to identify therapies that could be re-purposed/shared among the diseases and identified the bromodomain inhibitors as potential perturbagens to revert the transcriptional signatures. We experimentally confirmed in human ß-cells that bromodomain inhibitors I-BET151 and GSK046 prevent the deleterious effects of the pro-inflammatory cytokines interleukin-1ß and interferon-γ and at least some of the effects of the metabolic stressor palmitate. These results demonstrate that key inflammation-induced molecular mechanisms are shared between ß-cells and brain in autoimmune and degenerative diseases and that these signatures can be mined for drug discovery.

11.
Genome Biol ; 23(1): 196, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109769

RESUMO

BACKGROUND: Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown. RESULTS: We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B, a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B, a senescence regulator, and lncRNA MEG3. CONCLUSIONS: These data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , RNA Longo não Codificante , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , Isoformas de Proteínas/genética , Splicing de RNA , RNA Longo não Codificante/metabolismo
12.
Sci Adv ; 8(37): eabn5732, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103539

RESUMO

IFNα is a key regulator of the dialogue between pancreatic ß cells and the immune system in early type 1 diabetes (T1D). IFNα up-regulates HLA class I expression in human ß cells, fostering autoantigen presentation to the immune system. We observed by bulk and single-cell RNA sequencing that exposure of human induced pluripotent-derived islet-like cells to IFNα induces expression of HLA class I and of other genes involved in antigen presentation, including the transcriptional activator NLRC5. We next evaluated the global role of NLRC5 in human insulin-producing EndoC-ßH1 and human islet cells by RNA sequencing and targeted gene/protein determination. NLRC5 regulates expression of HLA class I, antigen presentation-related genes, and chemokines. NLRC5 also mediates the effects of IFNα on alternative splicing, a generator of ß cell neoantigens, suggesting that it is a central player of the effects of IFNα on ß cells that contribute to trigger and amplify autoimmunity in T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Processamento Alternativo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Interferon-alfa/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ilhotas Pancreáticas/metabolismo , Transcrição Gênica
13.
Cells ; 11(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35954309

RESUMO

Metformin, a drug widely used in type 2 diabetes (T2D), has been shown to protect human ß-cells exposed to gluco- and/or lipotoxic conditions and those in islets from T2D donors. We assessed whether metformin could relieve the human ß-cell stress induced by pro-inflammatory cytokines (which mediate ß-cells damage in type 1 diabetes, T1D) and investigated the underlying mechanisms using shotgun proteomics. Human islets were exposed to 50 U/mL interleukin-1ß plus 1000 U/mL interferon-γ for 48 h, with or without 2.4 µg/mL metformin. Glucose-stimulated insulin secretion (GSIS) and caspase 3/7 activity were studied, and a shotgun label free proteomics analysis was performed. Metformin prevented the reduction of GSIS and the activation of caspase 3/7 induced by cytokines. Proteomics analysis identified more than 3000 proteins in human islets. Cytokines alone altered the expression of 244 proteins (145 up- and 99 down-regulated), while, in the presence of metformin, cytokine-exposure modified the expression of 231 proteins (128 up- and 103 downregulated). Among the proteins inversely regulated in the two conditions, we found proteins involved in vesicle motility, defense against oxidative stress (including peroxiredoxins), metabolism, protein synthesis, glycolysis and its regulation, and cytoskeletal proteins. Metformin inhibited pathways linked to inflammation, immune reactions, mammalian target of rapamycin (mTOR) signaling, and cell senescence. Some of the changes were confirmed by Western blot. Therefore, metformin prevented part of the deleterious actions of pro-inflammatory cytokines in human ß-cells, which was accompanied by islet proteome modifications. This suggests that metformin, besides use in T2D, might be considered for ß-cell protection in other types of diabetes, possibly including early T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Metformina , Caspase 3/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Glucose/toxicidade , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Metformina/farmacologia
14.
Cell Death Discov ; 8(1): 340, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906204

RESUMO

The loss of functional ß-cell mass in type 2 diabetes (T2D) is associated with molecular events that include ß-cell apoptosis, dysfunction and/or dedifferentiation. MicroRNA miR-184-3p has been shown to be involved in several ß-cell functions, including insulin secretion, proliferation and survival. However, the downstream targets and upstream regulators of miR-184-3p have not been fully elucidated. Here, we show reduced miR-184-3p levels in human T2D pancreatic islets, whereas its direct target CREB regulated transcription coactivator 1 (CRTC1) was increased and protects ß-cells from lipotoxicity- and inflammation-induced apoptosis. Downregulation of miR-184-3p in ß-cells leads to upregulation of CRTC1 at both the mRNA and protein levels. Remarkably, the protective effect of miR-184-3p is dependent on CRTC1, as its silencing in human ß-cells abrogates the protective mechanism mediated by inhibition of miR-184-3p. Furthermore, in accordance with miR-184-3p downregulation, we also found that the ß-cell-specific transcription factor NKX6.1, DNA-binding sites of which are predicted in the promoter sequence of human and mouse MIR184 gene, is reduced in human pancreatic T2D islets. Using chromatin immunoprecipitation analysis and mRNA silencing experiments, we demonstrated that NKX6.1 directly controls both human and murine miR-184 expression. In summary, we provide evidence that the decrease in NKX6.1 expression is accompanied by a significant reduction in miR-184-3p expression and that reduction of miR-184-3p protects ß-cells from apoptosis through a CRTC1-dependent mechanism.

15.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806437

RESUMO

Type 2 diabetes (T2D) has been considered a relentlessly worsening disease, due to the progressive deterioration of the pancreatic beta cell functional mass. Recent evidence indicates, however, that remission of T2D may occur in variable proportions of patients after specific treatments that are associated with recovery of beta cell function. Here we review the available information on the recovery of beta cells in (a) non-diabetic individuals previously exposed to metabolic stress; (b) T2D patients following low-calorie diets, pharmacological therapies or bariatric surgery; (c) human islets isolated from non-diabetic organ donors that recover from "lipo-glucotoxic" conditions; and (d) human islets isolated from T2D organ donors and exposed to specific treatments. The improvement of insulin secretion reported by these studies and the associated molecular traits unveil the possibility to promote T2D remission by directly targeting pancreatic beta cells.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo
16.
Cell Death Dis ; 13(5): 476, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589698

RESUMO

The transcription factor nuclear factor-κB (NF-κB) has a key role in the pathogenesis of diabetes and its complications. Although activation of the canonical NF-κB pathway in ß-cells is generally deleterious, little is known about the role of the non-canonical NF-κB signalling and its main regulator, the NF-κB-inducing kinase (NIK), on pancreatic ß-cell survival and function. Previous studies based on models of NIK overexpression in pancreatic islet cells showed that NIK induced either spontaneous ß-cell death due to islet inflammation or glucose intolerance during diet-induced obesity (DIO) in mice. Therefore, NIK has been proposed as a potential target for diabetes therapy. However, no clear studies showed whether inhibition of NIK improves diabetes development. Here we show that genetic silencing of NIK in pancreatic ß-cells neither modifies diabetes incidence nor inflammatory responses in a mouse model of immune-mediated diabetes. Moreover, NIK silencing in DIO mice did not influence body weight gain, nor glucose metabolism. In vitro studies corroborated the in vivo findings in terms of ß-cell survival, function, and downstream gene regulation. Taken together, our data suggest that NIK activation is dispensable for the development of diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Animais , Diabetes Mellitus/patologia , Células Secretoras de Insulina/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia , Quinase Induzida por NF-kappaB
17.
Front Immunol ; 13: 833141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359976

RESUMO

The interaction between genetic and environmental factors determines the development of type 1 diabetes (T1D). Some viruses are capable of infecting and damaging pancreatic ß-cells, whose antiviral response could be modulated by specific viral RNA receptors and sensors such as melanoma differentiation associated gene 5 (MDA5), encoded by the IFIH1 gene. MDA5 has been shown to be involved in pro-inflammatory and immunoregulatory outcomes, thus determining the response of pancreatic islets to viral infections. Although the function of MDA5 has been previously well explored, a detailed immunohistochemical characterization of MDA5 in pancreatic tissues of nondiabetic and T1D donors is still missing. In the present study, we used multiplex immunofluorescence imaging analysis to characterize MDA5 expression and distribution in pancreatic tissues obtained from 22 organ donors (10 nondiabetic autoantibody-negative, 2 nondiabetic autoantibody-positive, 8 recent-onset, and 2 long-standing T1D). In nondiabetic control donors, MDA5 was expressed both in α- and ß-cells. The colocalization rate imaging analysis showed that MDA5 was preferentially expressed in α-cells. In T1D donors, we observed an increased colocalization rate of MDA5-glucagon with respect to MDA5-insulin in comparison to nondiabetic controls; such increase was more pronounced in recent-onset with respect to long-standing T1D donors. Of note, an increased colocalization rate of MDA5-glucagon was found in insulin-deficient-islets (IDIs) with respect to insulin-containing-islets (ICIs). Strikingly, we detected the presence of MDA5-positive/hormone-negative endocrine islet-like clusters in T1D donors, presumably due to dedifferentiation or neogenesis phenomena. These clusters were identified exclusively in donors with recent disease onset and not in autoantibody-positive nondiabetic donors or donors with long-standing T1D. In conclusion, we showed that MDA5 is preferentially expressed in α-cells, and its expression is increased in recent-onset T1D donors. Finally, we observed that MDA5 may also characterize the phenotype of dedifferentiated or newly forming islet cells, thus opening to novel roles for MDA5 in pancreatic endocrine cells.


Assuntos
Diabetes Mellitus Tipo 1 , Células Endócrinas , Células Secretoras de Glucagon , Ilhotas Pancreáticas , Autoanticorpos/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Endócrinas/metabolismo , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Doadores de Tecidos
18.
Transplantation ; 106(1): 147-157, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33909390

RESUMO

BACKGROUND: Physiologically regulated insulin secretion and euglycemia are achievable in type 1 diabetes (T1D) by islet or pancreas transplantation. However, pancreas transplant alone (PTA) remains a debated approach, with uncertainties on its relative benefits and risks. We determined the actual long-term (10 y) efficacy and safety of PTA in carefully characterized T1D subjects. METHODS: This is a single-center, cohort study in 66 consecutive T1D subjects who received a PTA between April 2001 and December 2007, and were then all followed until 10 y since transplant. Main features evaluated were patient survival, pancreas graft function, C-peptide levels, glycemic parameters, and the function of the native kidneys. RESULTS: Ten-year actual patient survival was 92.4%. Optimal (insulin independence) or good (minimal insulin requirement) graft function was observed in 57.4% and 3.2% of patients, respectively. Six (9.0%) patients developed stage 5 or 4 chronic kidney disease. In the remaining individuals bearing a successful PTA, estimated glomerular filtration rate (eGFR) decline per year was -2.29 ± 2.69 mL/min/1.73 m2. Reduction of eGFR at 1 y post-PTA was higher in those with pre-PTA hyperfiltration and higher HbA1c concentrations; eGFR changes afterward significantly correlated with diabetes duration. In recipients with normoglycemia at 10 y, 74% of normoalbuminuric or microalbuminuric subjects pre-PTA remained stable, and 26% progressed toward a worse stage; conversely, in 62.5% of the macroalbuminuric individuals albuminuria severity regressed. CONCLUSIONS: These long-term effects of PTA on patient survival, graft function, and the native kidneys support PTA as a suitable approach to treat diabetes in selected T1D patients.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante de Pâncreas , Estudos de Coortes , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/cirurgia , Taxa de Filtração Glomerular , Sobrevivência de Enxerto/fisiologia , Humanos , Transplante de Pâncreas/efeitos adversos
19.
J Clin Endocrinol Metab ; 107(3): 668-684, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34718610

RESUMO

CONTEXT: Genes causing familial forms of diabetes mellitus are only partially known. OBJECTIVE: We set out to identify the genetic cause of hyperglycemia in multigenerational families with an apparent autosomal dominant form of adult-onset diabetes not due to mutations in known monogenic diabetes genes. METHODS: Existing whole-exome sequencing (WES) data were used to identify exonic variants segregating with diabetes in 60 families from the United States and Italy. Functional studies were carried out in vitro (transduced MIN6-K8 cells) and in vivo (Caenorhabditis elegans) to assess the diabetogenic potential of 2 variants in the malate dehydrogenase 2 (MDH2) gene linked with hyperglycemia in 2 of the families. RESULTS: A very rare mutation (p.Arg52Cys) in MDH2 strongly segregated with hyperglycemia in 1 family from the United States. An infrequent MDH2 missense variant (p.Val160Met) also showed disease cosegregation in a family from Italy, although with reduced penetrance. In silico, both Arg52Cys and Val160Met were shown to affect MDH2 protein structure and function. In transfected HepG2 cells, both variants significantly increased MDH2 enzymatic activity, thereby decreasing the NAD+/NADH ratio-a change known to affect insulin signaling and secretion. Stable expression of human wild-type MDH2 in MIN6-K8 cell lines enhanced glucose- and GLP-1-stimulated insulin secretion. This effect was blunted by the Cys52 or Met160 substitutions. Nematodes carrying equivalent changes at the orthologous positions of the mdh-2 gene showed impaired glucose-stimulated insulin secretion. CONCLUSION: Our findings suggest a central role of MDH2 in human glucose homeostasis and indicate that gain of function variants in this gene may be involved in the etiology of familial forms of diabetes.


Assuntos
Glicemia/metabolismo , Hiperglicemia/genética , Malato Desidrogenase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Animais Geneticamente Modificados , Glicemia/análise , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Mutação com Ganho de Função , Humanos , Hiperglicemia/sangue , Insulina/análise , Insulina/metabolismo , Secreção de Insulina/genética , Ilhotas Pancreáticas , Malato Desidrogenase/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequenciamento do Exoma
20.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829980

RESUMO

Arginase 2 (ARG2) is a manganese metalloenzyme involved in several tissue specific processes, from physiology to pathophysiology. It is variably expressed in extra-hepatic tissues and is located in the mitochondria. In human pancreatic beta cells, ARG2 is downregulated in type 2 diabetes. The enzyme regulates the synthesis of polyamines, that are involved in pancreas development and regulation of beta cell function. Here, we discuss several features of ARG2 and polyamines, which can be relevant to the pathophysiology of type 2 diabetes.


Assuntos
Arginase/genética , Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Poliaminas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Células Secretoras de Insulina/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...