Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 10563, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002402

RESUMO

Intrinsically disordered proteins (IDPs) are characterized by the lack of a fixed tertiary structure and are involved in the regulation of key biological processes via binding to multiple protein partners. IDPs are malleable, adapting to structurally different partners, and this flexibility stems from features encoded in the primary structure. The assumption that universal sequence information will facilitate coverage of the sparse zones of the human interactome motivated us to explore the possibility of predicting protein-protein interactions (PPIs) that involve IDPs based on sequence characteristics. We developed a method that relies on features of the interacting and non-interacting protein pairs and utilizes machine learning to classify and predict IDP PPIs. Consideration of both sequence determinants specific for conformational organizations and the multiplicity of IDP interactions in the training phase ensured a reliable approach that is superior to current state-of-the-art methods. By applying a strict evaluation procedure, we confirm that our method predicts interactions of the IDP of interest even on the proteome-scale. This service is provided as a web tool to expedite the discovery of new interactions and IDP functions with enhanced efficiency.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Sequência de Aminoácidos/fisiologia , Biologia Computacional , Conjuntos de Dados como Assunto , Humanos , Células MCF-7 , Aprendizado de Máquina , Modelos Moleculares , Anotação de Sequência Molecular , Ligação Proteica/fisiologia , Mapas de Interação de Proteínas/fisiologia
2.
Oncotarget ; 9(99): 37305-37318, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30647871

RESUMO

Treatment options for triple-negative breast cancer (TNBC) are limited due to the lack of efficient targeted therapies, frequently resulting in recurrence and metastatic disease. Accumulating evidence suggests that a small population of cancer stem-like cells (CSLCs) is responsible for tumor recurrence and therapy resistance. Here we investigated the role of cyclin-dependent kinase 9 (CDK9) in TNBC. Using The Cancer Genome Atlas (TCGA) data we found high-CDK9 expression correlates with worse overall survival in TNBC patients. Pharmacologic inhibition of CDK9 with atuveciclib in high-CDK9 expressing TNBC cell lines reduced expression of CDK9 targets MYC and MCL1 and decreased cell proliferation and survival. Importantly, atuveciclib inhibited the growth of mammospheres and reduced the percentage of CD24low/CD44high cells, indicating disruption of breast CSLCs (BCSLCs). Furthermore, atuveciclib impaired 3D invasion of tumorspheres suggesting inhibition of both invasion and metastatic potential. Finally, atuveciclib enhanced the antineoplastic effects of Cisplatin and promoted inhibitory effects on BCSLCs grown as mammospheres. Together, these findings suggest CDK9 as a potential therapeutic target in aggressive forms of CDK9-high TNBC.

3.
Cell Death Dis ; 8(5): e2771, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492543

RESUMO

Tamoxifen binds to oestrogen receptor α (ERα) to elicit distinct responses that vary by cell/tissue type and status, but the factors that determine these differential effects are unknown. Here we report that the transcriptional corepressor BASP1 interacts with ERα and in breast cancer cells, this interaction is enhanced by tamoxifen. We find that BASP1 acts as a major selectivity factor in the transcriptional response of breast cancer cells to tamoxifen. In all, 40% of the genes that are regulated by tamoxifen in breast cancer cells are BASP1 dependent, including several genes that are associated with tamoxifen resistance. BASP1 elicits tumour-suppressor activity in breast cancer cells and enhances the antitumourigenic effects of tamoxifen treatment. Moreover, BASP1 is expressed in breast cancer tissue and is associated with increased patient survival. Our data have identified BASP1 as an ERα cofactor that has a central role in the transcriptional and antitumourigenic effects of tamoxifen.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/biossíntese , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/biossíntese , Proteínas de Neoplasias/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Proteínas Repressoras/biossíntese , Tamoxifeno/farmacologia , Transcrição Gênica/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Células K562 , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética
4.
Nat Med ; 22(11): 1321-1329, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27775705

RESUMO

Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC-an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes-is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors. Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve. Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine-threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.


Assuntos
Carcinoma Ductal de Mama/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Feminino , Humanos , Marcação In Situ das Extremidades Cortadas , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Camundongos Transgênicos , Microscopia de Fluorescência , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...