Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 188: 114403, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35777667

RESUMO

Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.


Assuntos
Clatrina , Nanopartículas , Animais , Clatrina/metabolismo , Endocitose , Mamíferos/metabolismo , Camundongos , Preparações Farmacêuticas , Pinocitose
2.
PLoS Pathog ; 18(6): e1010507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35714165

RESUMO

The HIV/SIV envelope glycoprotein (Env) cytoplasmic domain contains a highly conserved Tyr-based trafficking signal that mediates both clathrin-dependent endocytosis and polarized sorting. Despite extensive analysis, the role of these functions in viral infection and pathogenesis is unclear. An SIV molecular clone (SIVmac239) in which this signal is inactivated by deletion of Gly-720 and Tyr-721 (SIVmac239ΔGY), replicates acutely to high levels in pigtail macaques (PTM) but is rapidly controlled. However, we previously reported that rhesus macaques and PTM can progress to AIDS following SIVmac239ΔGY infection in association with novel amino acid changes in the Env cytoplasmic domain. These included an R722G flanking the ΔGY deletion and a nine nucleotide deletion encoding amino acids 734-736 (ΔQTH) that overlaps the rev and tat open reading frames. We show that molecular clones containing these mutations reconstitute signals for both endocytosis and polarized sorting. In one PTM, a novel genotype was selected that generated a new signal for polarized sorting but not endocytosis. This genotype, together with the ΔGY mutation, was conserved in association with high viral loads for several months when introduced into naïve PTMs. For the first time, our findings reveal strong selection pressure for Env endocytosis and particularly for polarized sorting during pathogenic SIV infection in vivo.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Endocitose , Produtos do Gene env/genética , Macaca mulatta/metabolismo , Macaca nemestrina , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/metabolismo
3.
Viruses ; 13(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540739

RESUMO

With an estimated three to five million human cases annually and the potential to infect domestic and wild animal populations, influenza viruses are one of the greatest health and economic burdens to our society, and pose an ongoing threat of large-scale pandemics. Despite our knowledge of many important aspects of influenza virus biology, there is still much to learn about how influenza viruses replicate in infected cells, for instance, how they use entry receptors or exploit host cell trafficking pathways. These gaps in our knowledge are due, in part, to the difficulty of directly observing viruses in living cells. In recent years, advances in light microscopy, including super-resolution microscopy and single-molecule imaging, have enabled many viral replication steps to be visualised dynamically in living cells. In particular, the ability to track single virions and their components, in real time, now allows specific pathways to be interrogated, providing new insights to various aspects of the virus-host cell interaction. In this review, we discuss how state-of-the-art imaging technologies, notably quantitative live-cell and super-resolution microscopy, are providing new nanoscale and molecular insights into influenza virus replication and revealing new opportunities for developing antiviral strategies.


Assuntos
Influenza Humana/virologia , Microscopia/métodos , Orthomyxoviridae/fisiologia , Animais , Humanos , Microscopia/instrumentação , Orthomyxoviridae/genética , Análise Espaço-Temporal , Replicação Viral
4.
Viruses ; 13(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478139

RESUMO

The first step of cellular entry for the human immunodeficiency virus type-1 (HIV-1) occurs through the binding of its envelope protein (Env) with the plasma membrane receptor CD4 and co-receptor CCR5 or CXCR4 on susceptible cells, primarily CD4+ T cells and macrophages. Although there is considerable knowledge of the molecular interactions between Env and host cell receptors that lead to successful fusion, the precise way in which HIV-1 receptors redistribute to sites of virus binding at the nanoscale remains unknown. Here, we quantitatively examine changes in the nanoscale organisation of CD4 on the surface of CD4+ T cells following HIV-1 binding. Using single-molecule super-resolution imaging, we show that CD4 molecules are distributed mostly as either individual molecules or small clusters of up to 4 molecules. Following virus binding, we observe a local 3-to-10-fold increase in cluster diameter and molecule number for virus-associated CD4 clusters. Moreover, a similar but smaller magnitude reorganisation of CD4 was also observed with recombinant gp120. For one of the first times, our results quantify the nanoscale CD4 reorganisation triggered by HIV-1 on host CD4+ T cells. Our quantitative approach provides a robust methodology for characterising the nanoscale organisation of plasma membrane receptors in general with the potential to link spatial organisation to function.


Assuntos
Antígenos CD4/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virologia , HIV-1/fisiologia , Imagem Individual de Molécula/métodos , Linfócitos T/metabolismo , Linfócitos T/virologia , Ligação Viral , Algoritmos , Anticorpos Monoclonais , Linhagem Celular , Interpretação Estatística de Dados , Proteína gp120 do Envelope de HIV/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Processamento de Imagem Assistida por Computador , Ligação Proteica , Receptores CCR5/metabolismo , Receptores de HIV/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(35): 21637-21646, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817566

RESUMO

Understanding the molecular mechanisms involved in the assembly of viruses is essential for discerning how viruses transmit from cell to cell and host to host. Although molecular aspects of assembly have been studied for many viruses, we still have little information about these events in real time. Enveloped viruses such as HIV that assemble at, and bud from, the plasma membrane have been studied in some detail using live cell fluorescence imaging techniques; however, these approaches provide little information about the real-time morphological changes that take place as viral components come together to form individual virus particles. Here we used correlative scanning ion conductance microscopy and fluorescence confocal microscopy to measure the topological changes, together with the recruitment of fluorescently labeled viral proteins such as Gag and Vpr, during the assembly and release of individual HIV virus-like particles (VLPs) from the top, nonadherent surfaces of living cells. We show that 1) labeling of viral proteins with green fluorescent protein affects particle formation, 2) the kinetics of particle assembly on different plasma membrane domains can vary, possibly as a consequence of differences in membrane biophysical properties, and 3) VLPs budding from the top, unimpeded surface of cells can reach full size in 20 s and disappear from the budding site in 0.5 to 3 min from the moment curvature is initially detected, significantly faster than has been previously reported.


Assuntos
HIV-1/metabolismo , Vírion/metabolismo , Montagem de Vírus/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
7.
Curr Opin Physiol ; 17: 163-168, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32838099

RESUMO

Two-pore channels (TPCs) are a ubiquitous class of Ca2+- and Na+-permeable ion channels expressed within the endo-lysosomal system. They have emerged as central regulators of a wide array of physiological processes intimately linked to information processing. In this short review, we highlight how molecular and chemical strategies have uncovered multiple roles for TPCs in regulating various aspects of endo-lysosomal trafficking associated with disease. We summarise advances in the identification of new small molecules to pharmacologically target TPCs for medical benefit. Lastly, we discuss possible underpinning molecular mechanism(s) that translate TPC-mediated ionic fluxes to function.

9.
Viruses ; 12(4)2020 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325729

RESUMO

Bone Marrow Stromal Cell Antigen 2 (BST-2)/tetherin inhibits the release of numerous enveloped viruses by physically tethering nascent particles to infected cells during the process of viral budding from the cell surface. Tetherin also restricts human immunodeficiency virus (HIV), and pandemic main (M) group HIV type 1s (HIV-1s) are thought to rely exclusively on their Vpu proteins to overcome tetherin-mediated restriction of virus release. However, at least one M group HIV-1 strain, the macrophage-tropic primary AD8 isolate, is unable to express Vpu due to a mutation in its translation initiation codon. Here, using primary monocyte-derived macrophages (MDMs), we show that AD8 Nef protein can compensate for the absence of Vpu and restore virus release to wild type levels. We demonstrate that HIV-1 AD8 Nef reduces endogenous cell surface tetherin levels, physically separating it from the site of viral budding, thus preventing HIV retention. Mechanistically, AD8 Nef enhances internalisation of the long isoform of human tetherin, leading to perinuclear accumulation of the restriction factor. Finally, we show that Nef proteins from other HIV strains also display varying degrees of tetherin antagonism. Overall, we show that M group HIV-1s can use an accessory protein other than Vpu to antagonise human tetherin.


Assuntos
Antígenos CD/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Macrófagos/metabolismo , Macrófagos/virologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Antígenos CD/genética , Linhagem Celular , Imunofluorescência , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Infecções por HIV/imunologia , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química
10.
Traffic ; 21(5): 375-385, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32170988

RESUMO

Localization-based super-resolution microscopy relies on the detection of individual molecules cycling between fluorescent and non-fluorescent states. These transitions are commonly regulated by high-intensity illumination, imposing constrains to imaging hardware and producing sample photodamage. Here, we propose single-molecule self-quenching as a mechanism to generate spontaneous photoswitching. To demonstrate this principle, we developed a new class of DNA-based open-source super-resolution probes named super-beacons, with photoswitching kinetics that can be tuned structurally, thermally and chemically. The potential of these probes for live-cell compatible super-resolution microscopy without high-illumination or toxic imaging buffers is revealed by imaging interferon inducible transmembrane proteins (IFITMs) at sub-100 nm resolutions.


Assuntos
Piscadela , DNA , Microscopia de Fluorescência , Corantes Fluorescentes
11.
12.
Biochim Biophys Acta Biomembr ; 1862(6): 183158, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31863725

RESUMO

As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.


Assuntos
HIV-1/fisiologia , Receptores Virais/metabolismo , Internalização do Vírus , HIV-1/metabolismo , Humanos , Ligação Proteica
13.
Life Sci Alliance ; 3(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826928

RESUMO

Host interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral restriction factors. Of these, IFITM3 potently inhibits viruses that enter cells through acidic endosomes, many of which are zoonotic and emerging viruses with bats (order Chiroptera) as their natural hosts. We previously demonstrated that microbat IFITM3 is antiviral. Here, we show that bat IFITMs are characterized by strong adaptive evolution and identify a highly variable and functionally important site-codon 70-within the conserved CD225 domain of IFITMs. Mutation of this residue in microbat IFITM3 impairs restriction of representatives of four different virus families that enter cells via endosomes. This mutant shows altered subcellular localization and reduced S-palmitoylation, a phenotype copied by mutation of conserved cysteine residues in microbat IFITM3. Furthermore, we show that microbat IFITM3 is S-palmitoylated on cysteine residues C71, C72, and C105, mutation of each cysteine individually impairs virus restriction, and a triple C71A-C72A-C105A mutant loses all restriction activity, concomitant with subcellular re-localization of microbat IFITM3 to Golgi-associated sites. Thus, we propose that S-palmitoylation is critical for Chiropteran IFITM3 function and identify a key molecular determinant of IFITM3 S-palmitoylation.


Assuntos
Quirópteros/genética , Lipoilação/genética , Proteínas de Membrana/genética , Polimorfismo Genético , Domínios Proteicos/genética , Proteínas de Ligação a RNA/genética , Células A549 , Animais , Antígenos de Diferenciação/genética , Códon/genética , Códon/metabolismo , Endossomos/metabolismo , Endossomos/virologia , Evolução Molecular , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Proteínas de Membrana/metabolismo , Filogenia , Proteínas de Ligação a RNA/metabolismo , Transdução Genética , Internalização do Vírus , Zika virus/fisiologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
14.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-31559009

RESUMO

The process of entry into a host cell is a key step in the life cycle of most viruses. In recent years, there has been a significant increase in our understanding of the routes and mechanisms of entry for a number of these viruses. This has led to the development of novel broad-spectrum antiviral approaches that target host cell proteins and pathways, in addition to strategies focused on individual viruses or virus families. Here we consider a number of these approaches and their broad-spectrum potential.


Assuntos
Antivirais/farmacologia , Internalização do Vírus , Vírus/efeitos dos fármacos , Humanos , Receptores de Superfície Celular , Receptores Virais
15.
Elife ; 82019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31284899

RESUMO

CpG dinucleotides are suppressed in most vertebrate RNA viruses, including HIV-1, and introducing CpGs into RNA virus genomes inhibits their replication. The zinc finger antiviral protein (ZAP) binds regions of viral RNA containing CpGs and targets them for degradation. ZAP does not have enzymatic activity and recruits other cellular proteins to inhibit viral replication. We found that KHNYN, a protein with no previously known function, interacts with ZAP. KHNYN overexpression selectively inhibits HIV-1 containing clustered CpG dinucleotides and this requires ZAP and its cofactor TRIM25. KHNYN requires both its KH-like domain and NYN endonuclease domain for antiviral activity. Crucially, depletion of KHNYN eliminated the deleterious effect of CpG dinucleotides on HIV-1 RNA abundance and infectious virus production and also enhanced the production of murine leukemia virus. Overall, we have identified KHNYN as a novel cofactor for ZAP to target CpG-containing retroviral RNA for degradation.


Assuntos
Ilhas de CpG/genética , HIV-1/genética , Proteínas de Ligação a RNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Domínios Proteicos , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Deleção de Sequência/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo
16.
Front Immunol ; 10: 675, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024536

RESUMO

Single-molecule localization microscopy (SMLM) techniques allow near molecular scale resolution (~ 20 nm) as well as precise and robust analysis of protein organization at different scales. SMLM hardware, analytics and probes have been the focus of a variety of studies and are now commonly used in laboratories across the world. Protocol reliability and artifact identification are increasingly seen as important aspects of super-resolution microscopy. The reliability of these approaches thus requires in-depth evaluation so that biological findings are based on solid foundations. Here we explore how different fixation approaches that disrupt or preserve the actin cytoskeleton affect membrane protein organization. Using CD4 as a model, we show that fixation-mediated disruption of the actin cytoskeleton correlates with changes in CD4 membrane organization. We highlight how these artifacts are easy to overlook and how careful sample preparation is essential for extracting meaningful results from super-resolution microscopy.


Assuntos
Citoesqueleto de Actina/metabolismo , Antígenos CD4/metabolismo , Membrana Celular/metabolismo , Imagem Individual de Molécula/métodos , Fixação de Tecidos/métodos , Animais , Artefatos , Células COS , Chlorocebus aethiops , Erros de Diagnóstico/prevenção & controle , Formaldeído/farmacologia , Microfluídica , Polímeros/farmacologia , Conformação Proteica/efeitos dos fármacos , Agregação de Receptores/efeitos dos fármacos , Reprodutibilidade dos Testes
17.
Viruses ; 11(2)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791609

RESUMO

Viruses are a major threat to human health and economic well-being. In recent years Ebola, Zika, influenza, and chikungunya virus epidemics have raised awareness that infections can spread rapidly before vaccines or specific antagonists can be made available. Broad-spectrum antivirals are drugs with the potential to inhibit infection by viruses from different groups or families, which may be deployed during outbreaks when specific diagnostics, vaccines or directly acting antivirals are not available. While pathogen-directed approaches are generally effective against a few closely related viruses, targeting cellular pathways used by multiple viral agents can have broad-spectrum efficacy. Virus entry, particularly clathrin-mediated endocytosis, constitutes an attractive target as it is used by many viruses. Using a phenotypic screening strategy where the inhibitory activity of small molecules was sequentially tested against different viruses, we identified 12 compounds with broad-spectrum activity, and found a subset blocking viral internalisation and/or fusion. Importantly, we show that compounds identified with this approach can reduce viral replication in a mouse model of Zika infection. This work provides proof of concept that it is possible to identify broad-spectrum inhibitors by iterative phenotypic screenings, and that inhibition of host-pathways critical for viral life cycles can be an effective antiviral strategy.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Internalização do Vírus/efeitos dos fármacos , Vírus/efeitos dos fármacos , Animais , Células HeLa , Humanos , Concentração Inibidora 50 , Camundongos , RNA Viral/genética , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico
18.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1151-1161, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30408544

RESUMO

Two-pore channels (TPCs) are Ca2+-permeable ion channels localised to the endo-lysosomal system where they regulate trafficking of various cargoes including viruses. As a result, TPCs are emerging as important drug targets. However, their pharmacology is ill-defined. There are no approved drugs to target them. And their mechanism of ligand activation is largely unknown. Here, we identify a number of FDA-approved drugs as TPC pore blockers. Using a model of the pore of human TPC2 based on recent structures of mammalian TPCs, we virtually screened a database of ~1500 approved drugs. Because TPCs have recently emerged as novel host factors for Ebola virus entry, we reasoned that Ebola virus entry inhibitors may exert their effects through inhibition of TPCs. Cross-referencing hits from the TPC virtual screen with two recent high throughput anti-Ebola screens yielded approved drugs targeting dopamine and estrogen receptors as common hits. These compounds inhibited endogenous NAADP-evoked Ca2+ release from sea urchin egg homogenates, NAADP-mediated channel activity of TPC2 re-routed to the plasma membrane, and PI(3,5)P2-mediated channel activity of TPC2 expressed in enlarged lysosomes. Mechanistically, single channel analyses showed that the drugs reduced mean open time consistent with a direct action on the pore. Functionally, drug potency in blocking TPC2 activity correlated with inhibition of Ebola virus-like particle entry. Our results expand TPC pharmacology through the identification of approved drugs as novel blockers, support a role for TPCs in Ebola virus entry, and provide insight into the mechanisms underlying channel regulation. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Assuntos
Antivirais/farmacologia , Canais de Cálcio/metabolismo , Ebolavirus/metabolismo , Lisossomos/metabolismo , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/química , Canais de Cálcio/genética , Avaliação de Medicamentos , Ebolavirus/genética , Células HEK293 , Humanos , Lisossomos/genética , Lisossomos/virologia , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Ouriços-do-Mar
19.
PLoS Pathog ; 14(1): e1006835, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377936

RESUMO

Virus reprogramming of cellular metabolism is recognised as a critical determinant for viral growth. While most viruses appear to activate central energy metabolism, different viruses have been shown to rely on alternative mechanisms of metabolic activation. Whether related viruses exploit conserved mechanisms and induce similar metabolic changes is currently unclear. In this work we investigate how two alphaviruses, Semliki Forest virus and Ross River virus, reprogram host metabolism and define the molecular mechanisms responsible. We demonstrate that in both cases the presence of a YXXM motif in the viral protein nsP3 is necessary for binding to the PI3K regulatory subunit p85 and for activating AKT. This leads to an increase in glucose metabolism towards the synthesis of fatty acids, although additional mechanisms of metabolic activation appear to be involved in Ross River virus infection. Importantly, a Ross River virus mutant that fails to activate AKT has an attenuated phenotype in vivo, suggesting that viral activation of PI3K/AKT contributes to virulence and disease.


Assuntos
Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Alphavirus/fisiologia , Glucose/metabolismo , Interações Hospedeiro-Patógeno , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alphavirus/patogenicidade , Animais , Células Cultivadas , Cricetinae , Ativação Enzimática , Glicólise/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ross River virus/fisiologia , Vírus da Floresta de Semliki/fisiologia , Virulência
20.
J Cell Sci ; 130(1): 278-291, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27445312

RESUMO

The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research.


Assuntos
Células Endoteliais/ultraestrutura , Imageamento Tridimensional , Macrófagos/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Sobrevivência Celular , Células Cultivadas , Células Endoteliais/microbiologia , Entose , HIV/ultraestrutura , Humanos , Espaço Intracelular/microbiologia , Macrófagos/virologia , Monócitos/citologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA