Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(4): 1736-1744, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38013417

RESUMO

High-pressure neutron diffraction is employed to investigate the magnetic behavior of CaMn2Bi2 in extreme conditions. In contrast to antiferromagnetic ordering on Mn atoms reported at ambient pressure, our results reveal that at high pressure, incommensurate spiral spin order emerges due to the interplay between magnetism on the Mn atoms and strong spin-orbit coupling on the Bi atoms: sinusoidal spin order is observed at pressures as high as 7.4 GPa. First-principles calculations with a noncollinear spin orientation demonstrate band crossing behavior near the Fermi level as a result of strong hybridization between the d orbitals of Mn and the p orbitals of Bi atoms. Competing antiferromagnetic order is observed at different temperatures in the partially frustrated lattice. Theoretical models have been developed to investigate spin dynamics. This research provides a unique toolbox for conducting experimental and theoretical magnetic and spin dynamics studies of magnetic quantum materials via high-pressure neutron diffraction.

2.
J Am Chem Soc ; 145(38): 20943-20950, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37708375

RESUMO

The kagome metals display an intriguing variety of electronic and magnetic phases arising from the connectivity of atoms on a kagome lattice. A growing number of these materials with vanadium-kagome nets host charge-density waves (CDWs) at low temperatures, including ScV6Sn6, CsV3Sb5, and V3Sb2. Curiously, only the Sc version of the RV6Sn6 materials with a HfFe6Ge6-type structure hosts a CDW (R = Gd-Lu, Y, Sc). In this study, we investigate the role of rare earth size in CDW formation in the RV6Sn6 compounds. Magnetization measurements on our single crystals of (Sc,Lu)V6Sn6 and (Sc,Y)V6Sn6 establish that the CDW is suppressed by substituting Sc by larger Lu or Y. Single-crystal X-ray diffraction reveals that compressible Sn-Sn bonds accommodate the larger rare earth atoms within loosely packed R-Sn-Sn chains without significantly expanding the lattice. We propose that Sc provides extra room in these chains crucial to CDW formation in ScV6Sn6. Our rattling chain model explains why both physical pressure and substitution by larger rare earth atoms hinder CDW formation despite opposite impacts on lattice size. We emphasize the cooperative effect of pressure and rare earth size by demonstrating that pressure further suppresses the CDW in a Lu-doped ScV6Sn6 crystal. Our model not only addresses why a CDW only forms in the RV6Sn6 materials with tiny Sc but also advances our understanding of why unusual CDWs form in the kagome metals.

3.
Nat Commun ; 14(1): 3641, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336899

RESUMO

A 2-Q antiferromagnetic order of the ferromagnetic dimers was found below TN = 2.9 K in the Shastry-Sutherland lattice BaNd2ZnS5 by single crystal neutron diffraction. The magnetic order can be understood by the orthogonal arrangement of local Ising Nd spins, identified by polarized neutrons. A field was applied along [1 -1 0] to probe the observed metamagnetic transition in the magnetization measurement. The field decouples two magnetic sublattices corresponding to the propagation vectors q1 = (½, ½, 0) and q2 = (-½, ½, 0), respectively. Each sublattice shows a "stripe" order with a Néel-type arrangement in each single layer. The "stripe" order with q1 remains nearly intact up to 6 T, while the other one with q2 is suppressed at a critical field Hc ~1.7 T, indicating a partial disorder. The Hc varies with temperature and is manifested in the H-T phase diagram constructed by measuring the magnetization in BaNd2ZnS5.

4.
Inorg Chem ; 62(5): 2161-2168, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36662554

RESUMO

Sr2IrO4 with strong spin-orbit coupling and Hubbard repulsion (U) hosts Mott insulating states. The similar crystal structure and magnetic and electronic properties, particularly the d-wave gap observed in Sr2IrO4 enhanced the analogies to the cuprate high-Tc superconductor, La2CuO4. The incomplete analogy was due to the lack of broken inversion symmetry phases observed in Sr2IrO4. Here, under high-pressure and high-temperature conditions, we report a noncentrosymmetric Sr2IrO4. The crystal structure and its noncentrosymmetric character were determined by single-crystal X-ray diffraction and high-resolution scanning transmission electron microscopy. The magnetic characterization confirms the Ir4+ with S = 1/2 at low temperature in Sr2IrO4 with magnetic ordering occurring at around 86 K, where a larger moment is observed than the ambient pressure Sr2IrO4. Moreover, the resistivity measurement shows three-dimensional Mott variable-range hopping (VRH) existed in the system. This noncentrosymmetric Sr2IrO4 phase appears to be a unique material that offers a further understanding of high-Tc superconductivity.

5.
Phys Rev Lett ; 129(21): 216402, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36461982

RESUMO

Materials hosting kagome lattices have drawn interest for the diverse magnetic and electronic states generated by geometric frustration. In the AV_{3}Sb_{5} compounds (A=K, Rb, Cs), stacked vanadium kagome layers give rise to unusual charge density waves (CDW) and superconductivity. Here we report single-crystal growth and characterization of ScV_{6}Sn_{6}, a hexagonal HfFe_{6}Ge_{6}-type compound that shares this structural motif. We identify a first-order phase transition at 92 K. Single crystal x-ray and neutron diffraction reveal a charge density wave modulation of the atomic lattice below this temperature. This is a distinctly different structural mode than that observed in the AV_{3}Sb_{5} compounds, but both modes have been anticipated in kagome metals. The diverse HfFe_{6}Ge_{6} family offers more opportunities to tune ScV_{6}Sn_{6} and explore density wave order in kagome lattice materials.

6.
Inorg Chem ; 61(9): 3981-3988, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35192320

RESUMO

MnPd5Se, a derivative of the anti-CeCoIn5-type phase, was synthesized from a high-temperature solid-state reaction, structurally determined by X-ray diffraction, and magnetically characterized with a combined magnetic measurement and neutron powder diffraction (NPD). According to the X-ray diffraction results, MnPd5Se crystallizes in a layered tetragonal structure with the same space group as CeCoIn5, P4/mmm (No. 123). MnPd5Se shows antiferromagnetic ordering around 80 K on the basis of the magnetic property measurements. An A-type antiferromagnetic structure was revealed from the analysis of neutron powder diffraction results at 300, 50, and 6 K. Moreover, a spin orientation rotation was observed as the temperature decreased. Pd L3 X-ray absorption near edge spectroscopy results for MnPd5Se semiqualitatively correlate with the calculated density of states supporting a nominal 0.2 electron transfer into the Pd d orbital from either Se or Mn in the compound. The discovery of MnPd5Se, along with our previously reported MnT5Pn (T = Pd or Pt; Pn = P or As), provides a tunable system for studying the magnetic ordering from ferromagnetism to antiferromagnetism with the strong spin-orbit coupling effect.

7.
Nano Lett ; 21(3): 1205-1212, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33492966

RESUMO

The control of domain walls is central to nearly all magnetic technologies, particularly for information storage and spintronics. Creative attempts to increase storage density need to overcome volatility due to thermal fluctuations of nanoscopic domains and heating limitations. Topological defects, such as solitons, skyrmions, and merons, may be much less susceptible to fluctuations, owing to topological constraints, while also being controllable with low current densities. Here, we present the first evidence for soliton/soliton and soliton/antisoliton domain walls in the hexagonal chiral magnet Mn1/3NbS2 that respond asymmetrically to magnetic fields and exhibit pair-annihilation. This is important because it suggests the possibility of controlling the occurrence of soliton pairs and the use of small fields or small currents to control nanoscopic magnetic domains. Specifically, our data suggest that either soliton/soliton or soliton/antisoliton pairs can be stabilized by tuning the balance between intrinsic exchange interactions and long-range magnetostatics in restricted geometries.

8.
J Phys Condens Matter ; 33(13)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33412519

RESUMO

Transition metal stannides are usually semiconductors with a narrow band gap. We report experimental investigation on metallic Ir3Sn7-xMnx(x= 0 and 0.56). Single crystal x-ray diffraction refinement indicates that Ir3Sn7-xMnxcrystals form a cubic structure (space groupIm3̄m) with the lattice parametera= 9.362(4) Å forx= 0 and 9.328(6) Å forx= 0.56. The electrical resistivity shows metallic behavior between 2 K and 300 K withT2dependence atT< 30 K forx= 0, reflecting the Fermi-liquid ground state. While Ir3Sn7exhibits weak diamagnetism, partial substitution of Sn by Mn results in spin glass behavior in Ir3Sn7-xMnxbelowTg∼ 13 K forx= 0.56. Remarkably, an upturn in the resistivity is observed inx= 0.56 below ∼2Tg, suggesting strong spin fluctuation. This fluctuation is suppressed by the application of magnetic field, which is reflected in the observation of negative magnetoresistance. The unusual properties that emerge due to Mn doping are discussed.

9.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 5): 884-891, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017321

RESUMO

The results of the structural determination, magnetic characterization, and theoretical calculations of a new ruthenium-oxo complex, Li4[Ru2OCl10]·10H2O, are presented. Single crystals were grown using solvent methods and the crystal structure was characterized by single crystal X-ray diffraction. Li4[Ru2OCl10]·10H2O crystallizes into a low-symmetry triclinic structure (P1) due to the much smaller Li+ cation compared to K+ cation in the tetragonal complex K4[Ru2OCl10]·H2O. The X-ray photoelectron spectra confirm only the single valent Ru4+ in Li4[Ru2OCl10]·10H2O even though two distinct Ru sites exist in the crystal structure. Magnetic measurements reveal the diamagnetic property of Li4[Ru2OCl10]·10H2O with unpaired electrons existing on Ru4+. Furthermore, the molecular orbital analysis matches well with the observed UV and magnetic measurements.

10.
Inorg Chem ; 58(20): 13960-13968, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31599587

RESUMO

While exploring novel magnetic semiconductors, the new phase Cr0.65Al1.35Se3 was discovered and characterized by both structural and physical properties. Cr0.65Al1.35Se3 was found to crystallize into orthorhombic CrGeTe3-type structure with space group Pnma (no. 62). Vacancies and mixed occupancies were tested, and the results show that one of the 4c sites accommodates a mixture of Cr and Al atoms, while the other 4c site is fully occupied by Al atoms. Unique structural features include a T-shaped channel network created from the edge-sharing Cr/Al@Se6 and Al@Se4 polyhedra and a zipper effect of the puckered Se atoms inside the columnar channels. The round peak observed in the temperature-dependent magnetic susceptibility (χg) plot at ∼8(1) K corresponds to the antiferromagnetic-type transition in Cr0.65Al1.35Se3. However, the positive θCW indicates an additional ferromagnetic interaction, which is highly likely due to the complex magnetic structure arising from the mixed Cr/Al occupancies on the 4c site. Electrical resistivity measurements confirm that Cr0.65Al1.35Se3 is a semimetal with a positive magnetoresistance. Here we present the characterization and determination of the crystal structure and physical properties for this new material.

11.
Inorg Chem ; 57(22): 14298-14303, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30345756

RESUMO

We present a novel magnetic semiconductor, Cr2.37Ga3Se8, synthesized by partially replacing magnetic Cr3+ in antiferromagnetic Cr5+δSe8 with nonmagnetic Ga3+. The crystal structure of Cr2.37Ga3Se8 was determined by both powder and single-crystal X-ray diffraction. The title compound crystallizes in a monoclinic structure with space group C2/ m (No. 12). In Cr2.37Ga3Se8, the Cr atoms are surrounded by 6 Se atoms and form filled octahedral clusters, while Ga atoms are centered in the Se4 tetrahedral clusters. The two kinds of clusters pack alternatingly along the c-axis, which results in a quasi-two-dimensional layered structure. The magnetization ( M) measurement shows the development of short-range ferromagnetic coupling below the Curie-Weiss (CW) temperature θCW ∼ 92 K, evidenced by the nonlinear field dependence of M. However, the magnetic susceptibility exhibits a peak at low fields at ∼18 K, indicating the existence of an antiferromagnetic interaction as well. Electronic structure calculations using the WIEN2k program in the local spin density approximation indicate that the magnetism arises exclusively from local moments of the Cr atoms. The electrical resistivity measurement of the Cr2.37Ga3Se8 sample confirms that this material is a semiconductor with the band gap ∼0.26 eV. Meanwhile, the experimental band gap (∼0.26 eV) is close to the theoretical prediction using the WIEN2k program (∼0.35 eV).

12.
Angew Chem Int Ed Engl ; 55(4): 1309-12, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26662287

RESUMO

The thermodynamically stable enol crystal form of barbituric acid, previously prepared as powder by grinding or slurry methods, has been obtained as single crystals by slow cooling from methanol solution. The selection of the enol crystal was facilitated by a density-gradient method. The structure at 224 and 95 K confirms the enol inferred on the basis of powder data. The enol has bond lengths that are consistent with the expected bond order and with DFT calculations that include treatment of hydrogen bonding. In isolation, the enol is higher in energy than the tri-keto form by 50 kJ mol(-1) which must be more than compensated by enhanced hydrogen bonding. Both crystal forms have four normal H-bonds; the enol has two additional H-bonds with O-O distances of 2.49 Å. Conversion into the enol form occurs spontaneously in the solid state upon prolonged storage of the commercial tri-keto material. Slurry conversion of tri-one to enol in ethanol is reversed in direction in ethanol-D1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...