Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Travel Med Infect Dis ; 60: 102725, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754530

RESUMO

no abstract requested for correspondance items.

2.
Am J Infect Control ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763430

RESUMO

We identified a high prevalence (46.4%) of wound colonization with methicillin-resistant Staphylococcus aureus (MRSA) in patients hospitalized in a Center devoted to the treatment of cutaneous tropical diseases in Benin. The proportion of MRSA among S. aureus isolates was 54.3%. Thirty percent of these MRSA were identified in outpatients. Concurrently, 51% of MRSA were identified in patients for whom the time spent in the Center was between 20 days and 228 days. The analysis of pulsed-field gel electrophoresis demonstrated an important diversity of strains but also identified eight small clusters containing between two and four isolates suggesting cross-transmission. Based on these data, hypotheses about acquisition routes were suggested and measures for limiting the burden of antimicrobial resistance were envisaged.

3.
Microbiol Spectr ; 12(4): e0382723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441471

RESUMO

The classical lineage of Mycobacterium ulcerans is the most prevalent clonal group associated with Buruli ulcer in humans. Its reservoir is strongly associated with the environment. We analyzed together 1,045 isolates collected from 13 countries on two continents to define the evolutionary history and population dynamics of this lineage. We confirm that this lineage spread over 7,000 years from Australia to Africa with the emergence of outbreaks in distinct waves in the 18th and 19th centuries. In sharp contrast with its global spread over the last century, transmission chains are now mostly local, with little or no dissemination between endemic areas. This study provides new insights into the phylogeography and population dynamics of M. ulcerans, highlighting the importance of comparative genomic analyses to improve our understanding of pathogen transmission. IMPORTANCE: Mycobacterium ulcerans is an environmental mycobacterial pathogen that can cause Buruli ulcer, a severe cutaneous infection, mostly spread in Africa and Australia. We conducted a large genomic study of M. ulcerans, combining genomic and evolutionary approaches to decipher its evolutionary history and pattern of spread at different geographic scales. At the scale of villages in an endemic area of Benin, the circulating genotypes have been introduced in recent decades and are not randomly distributed along the river. On a global scale, M. ulcerans has been spreading for much longer, resulting in distinct and compartmentalized endemic foci across Africa and Australia.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Humanos , Mycobacterium ulcerans/genética , Úlcera de Buruli/epidemiologia , Úlcera de Buruli/microbiologia , Filogenia , Genômica , Evolução Biológica
4.
PLoS Pathog ; 19(7): e1011479, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428812

RESUMO

Buruli ulcer is a chronic infectious disease caused by Mycobacterium ulcerans. The pathogen persistence in host skin is associated with the development of ulcerative and necrotic lesions leading to permanent disabilities in most patients. However, few of diagnosed cases are thought to resolve through an unknown self-healing process. Using in vitro and in vivo mouse models and M. ulcerans purified vesicles and mycolactone, we showed that the development of an innate immune tolerance was only specific to macrophages from mice able to heal spontaneously. This tolerance mechanism depends on a type I interferon response and can be induced by interferon beta. A type I interferon signature was further detected during in vivo infection in mice as well as in skin samples from patients under antibiotics regiment. Our results indicate that type I interferon-related genes expressed in macrophages may promote tolerance and healing during infection with skin damaging pathogen.


Assuntos
Úlcera de Buruli , Interferon Tipo I , Mycobacterium ulcerans , Camundongos , Animais , Úlcera de Buruli/microbiologia , Macrófagos , Macrolídeos , Tolerância Imunológica
5.
J Clin Microbiol ; 61(6): e0027423, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37212702

RESUMO

Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. Early diagnosis is crucial to prevent morbidity. In November 2012, a field laboratory fully equipped for the rapid on-site quantitative PCR (qPCR) diagnosis of M. ulcerans was established at the Buruli ulcer treatment center (CDTLUB) center in Pobè Benin, a region where BU is endemic. We describe its first 10 years of activity and its gradual evolution into an expert laboratory for BU diagnosis. From 2012 to 2022, the laboratory analyzed 3,018 samples from patients attending consultations for suspected BU at the CDTLUB in Pobè. Ziehl-Neelsen staining and qPCR targeting the IS2404 sequence were performed. Since 2019, the laboratory has also received and analyzed 570 samples from other centers. The laboratory confirmed the diagnosis of BU by qPCR for 39.7% samples: M. ulcerans DNA was detected in 34.7% of swabs, 47.2% of all fine needle aspiration samples (FNA) and 44.6% of all skin biopsy specimens. Positive Ziehl-Neelsen staining results were obtained for 19.0% samples. Bacterial load, estimated by qPCR, was significantly greater for the Ziehl-Neelsen-positive samples than for Ziehl-Neelsen-negative samples, and detection rates were highest for FNA samples. Overall, 26.3% of the samples received from other centers were positive for BU. Most of these samples were sent by the CDTLUBs of Lalo, Allada, and Zagnanado, Benin. The establishment of the laboratory in the CDTLUB of Pobè has been a huge success. Optimal patient care depends on the close proximity of a molecular biology structure to BU treatment centers. Finally, FNA should be promoted among caregivers. IMPORTANCE Here, we describe the first 10 years of activity at a field laboratory established at the Buruli ulcer treatment center (CDTLUB) in Pobè, Benin, a country in which Mycobacterium ulcerans is endemic. Between 2012 and 2022, the laboratory analyzed 3,018 samples from patients consulting the CDTLUB of Pobè with a suspected clinical BU. Ziehl-Neelsen staining and qPCR targeting the IS2404 sequence were performed. In total, 39.7% of samples tested positive by qPCR and 19.0% tested positive by Ziehl-Neelsen staining. Detection rates were highest for FNA samples, and the bacterial loads estimated by qPCR were significantly higher for Ziehl-Neelsen-positive samples than for Ziehl-Neelsen-negative samples. Since 2019, the laboratory has also analyzed 570 samples received from outside the CDTLUB of Pobè, 26.3% of which were positive for BU. Most of these samples were sent by the CDTLUBs of Lalo, Allada, and Zagnanado in Benin. The establishment of the laboratory in the CDTLUB of Pobè has been a huge success, with major benefits for both the medical staff and patients. Our findings illustrate that the usefulness and feasibility of having a diagnostic center in rural Africa, where the disease is endemic, is a key part of optimal patient care, and that FNA should be promoted to increase detection rates.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Humanos , Benin/epidemiologia , Úlcera de Buruli/diagnóstico , Corantes , Unidades Móveis de Saúde , Mycobacterium ulcerans/genética , Reação em Cadeia da Polimerase
6.
J Infect Dis ; 228(11): 1630-1639, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37221015

RESUMO

Mycobacterium ulcerans causes Buruli ulcer, the third most frequent mycobacterial disease after tuberculosis and leprosy. Transient clinical deteriorations, known as paradoxical reactions (PRs), occur in some patients during or after antibiotic treatment. We investigated the clinical and biological features of PRs in a prospective cohort of 41 patients with Buruli ulcer from Benin. Neutrophil counts decreased from baseline to day 90, and interleukin 6 (IL-6), granulocyte colony-stimulating factor, and vascular endothelial growth factor were the cytokines displaying a significant monthly decrease relative to baseline. PRs occurred in 10 (24%) patients. The baseline biological and clinical characteristics of the patients presenting with PRs did not differ significantly from those of the other patients. However, the patients with PRs had significantly higher IL-6 and tumor necrosis factor alpha (TNF-α) concentrations on days 30, 60, and 90 after the start of antibiotic treatment. The absence of a decrease in IL-6 and TNF-α levels during treatment should alert clinicians to the possibility of PR onset.


Assuntos
Úlcera de Buruli , Humanos , Úlcera de Buruli/tratamento farmacológico , Estudos Prospectivos , Fator de Necrose Tumoral alfa , Interleucina-6 , Fator A de Crescimento do Endotélio Vascular , Antibacterianos/uso terapêutico
7.
Nat Commun ; 14(1): 1160, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859433

RESUMO

By endowing light control of neuronal activity, optogenetics and photopharmacology are powerful methods notably used to probe the transmission of pain signals. However, costs, animal handling and ethical issues have reduced their dissemination and routine use. Here we report LAKI (Light Activated K+ channel Inhibitor), a specific photoswitchable inhibitor of the pain-related two-pore-domain potassium TREK and TRESK channels. In the dark or ambient light, LAKI is inactive. However, alternating transdermal illumination at 365 nm and 480 nm reversibly blocks and unblocks TREK/TRESK current in nociceptors, enabling rapid control of pain and nociception in intact and freely moving mice and nematode. These results demonstrate, in vivo, the subcellular localization of TREK/TRESK at the nociceptor free nerve endings in which their acute inhibition is sufficient to induce pain, showing LAKI potential as a valuable tool for TREK/TRESK channel studies. More importantly, LAKI gives the ability to reversibly remote-control pain in a non-invasive and physiological manner in naive animals, which has utility in basic and translational pain research but also in in vivo analgesic drug screening and validation, without the need of genetic manipulations or viral infection.


Assuntos
Dor , Canais de Potássio de Domínios Poros em Tandem , Animais , Camundongos , Avaliação Pré-Clínica de Medicamentos , Nociceptores , Nematoides , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores
8.
Trends Microbiol ; 30(11): 1116-1117, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36163220
9.
PLoS Pathog ; 18(8): e1010798, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36007070

RESUMO

Hepatitis E virus (HEV) infection is the most common cause of acute viral hepatitis worldwide. Hepatitis E is usually asymptomatic and self-limiting but it can become chronic in immunocompromised patients and is associated with increased fulminant hepatic failure and mortality rates in pregnant women. HEV genome encodes three proteins including the ORF2 protein that is the viral capsid protein. Interestingly, HEV produces 3 isoforms of the ORF2 capsid protein which are partitioned in different subcellular compartments and perform distinct functions in the HEV lifecycle. Notably, the infectious ORF2 (ORF2i) protein is the structural component of virions, whereas the genome-free secreted and glycosylated ORF2 proteins likely act as a humoral immune decoy. Here, by using a series of ORF2 capsid protein mutants expressed in the infectious genotype 3 p6 HEV strain as well as chimeras between ORF2 and the CD4 glycoprotein, we demonstrated how an Arginine-Rich Motif (ARM) located in the ORF2 N-terminal region controls the fate and functions of ORF2 isoforms. We showed that the ARM controls ORF2 nuclear translocation likely to promote regulation of host antiviral responses. This motif also regulates the dual topology and functionality of ORF2 signal peptide, leading to the production of either cytosolic infectious ORF2i or reticular non-infectious glycosylated ORF2 forms. It serves as maturation site of glycosylated ORF2 by furin, and promotes ORF2-host cell membrane interactions. The identification of ORF2 ARM as a unique central regulator of the HEV lifecycle uncovers how viruses settle strategies to condense their genetic information and hijack cellular processes.


Assuntos
Vírus da Hepatite E , Hepatite E , Motivos de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Feminino , Glicosilação , Hepatite E/genética , Hepatite E/metabolismo , Vírus da Hepatite E/crescimento & desenvolvimento , Humanos , Gravidez
10.
Methods Mol Biol ; 2387: 41-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34643900

RESUMO

Extracellular vesicles (EVs) from both eukaryotic and prokaryotic cells have been characterized over decades and present many biological properties. Since it has been shown that mycobacterial extracellular vesicles (MEVs) of M. ulcerans contain the macrolide toxin mycolactone, MEVs are known to be associated with the pathogenesis of mycobacteria. This chapter describes a method for purifying and characterizing vesicles from in vitro cultures of M. ulcerans. We also describe how purified vesicles can be used in cellular tests, to determine their role in the pathophysiology of M. ulcerans infection.


Assuntos
Toxinas Bacterianas , Infecções por Mycobacterium , Mycobacterium ulcerans , Úlcera de Buruli , Vesículas Extracelulares , Humanos , Macrolídeos
11.
PLoS Negl Trop Dis ; 15(12): e0010053, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962930

RESUMO

BACKGROUND: Buruli ulcer is a neglected tropical disease caused by Mycobacterium ulcerans, an environmental mycobacterium. Although transmission of M. ulcerans remains poorly understood, the main identified risk factor for acquiring Buruli ulcer is living in proximity of potentially contaminated water sources. Knowledge about the clinical features of Buruli ulcer and its physiopathology is increasing, but little is known about recurrence due to reinfection. METHODOLOGY/PRINCIPAL FINDINGS: We describe two patients with Buruli ulcer recurrence due to reinfection with M. ulcerans, as demonstrated by comparisons of DNA from the strains isolated at the time of the first diagnosis and at recurrence. Based on the spatial distribution of M. ulcerans genotypes in this region and a detailed study of the behavior of these two patients with respect to sources of water as well as water bodies and streams, we formulated hypotheses concerning the sites at which they may have been contaminated. CONCLUSIONS/SIGNIFICANCE: Second episodes of Buruli ulcer may occur through reinfection, relapse or a paradoxical reaction. We formally demonstrated that the recurrence in these two patients was due to reinfection. Based on the sites at which the patients reported engaging in activities relating to water, we were able to identify possible sites of contamination. Our findings indicate that the non-random distribution of M. ulcerans genotypes in this region may provide useful information about activities at risk.


Assuntos
Úlcera de Buruli/microbiologia , Mycobacterium ulcerans/genética , Reinfecção/microbiologia , Adulto , Benin , Criança , DNA Bacteriano/genética , Feminino , Genótipo , Humanos , Masculino , Mycobacterium ulcerans/classificação , Mycobacterium ulcerans/isolamento & purificação , Filogenia
12.
Virulence ; 12(1): 1438-1451, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34107844

RESUMO

Mycobacterium ulcerans is the causal agent of Buruli ulcer, a chronic infectious disease and the third most common mycobacterial disease worldwide. Without early treatment, M. ulcerans provokes massive skin ulcers, caused by the mycolactone toxin, its main virulence factor. However, spontaneous healing may occur in Buruli ulcer patients several months or years after the disease onset. We have shown, in an original mouse model, that bacterial load remains high and viable in spontaneously healed tissues, with a switch of M. ulcerans to low levels of mycolactone production, adapting its strategy to survive in such a hostile environment. This original model offers the possibility to investigate the regulation of mycolactone production, by using an RNA-seq strategy to study bacterial adaptation during mouse infection. Pathway analysis and characterization of the tissue environment showed that the bacillus adapted to its new environment by modifying its metabolic activity and switching nutrient sources. Thus, M. ulcerans ensures its survival in healing tissues by reducing its secondary metabolism, leading to an inhibition of mycolactone synthesis. These findings shed new light on mycolactone regulation and pave the way for new therapeutic strategies.


Assuntos
Úlcera de Buruli , Macrolídeos/metabolismo , Infecções por Mycobacterium , Mycobacterium ulcerans , Adaptação Biológica , Animais , Úlcera de Buruli/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Infecções por Mycobacterium/microbiologia , Mycobacterium ulcerans/genética
13.
J Infect Dis ; 224(11): 1973-1983, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33944942

RESUMO

Ketogenic diets have been used to treat diverse conditions, and there is growing evidence of their benefits for tissue repair and in inflammatory disease treatment. However, their role in infectious diseases has been little studied. Buruli ulcer (Mycobacterium ulcerans infection) is a chronic infectious disease characterized by large skin ulcerations caused by mycolactone, the major virulence factor of the bacillus. In the current study, we investigated the impact of ketogenic diet on this cutaneous disease in an experimental mouse model. This diet prevented ulceration, by modulating bacterial growth and host inflammatory response. ß-hydroxybutyrate, the major ketone body produced during ketogenic diet and diffusing in tissues, impeded M. ulcerans growth and mycolactone production in vitro underlying its potential key role in infection. These results pave the way for the development of new patient management strategies involving shorter courses of treatment and improving wound healing, in line with the major objectives of the World Health Organization.


Assuntos
Ácido 3-Hidroxibutírico , Úlcera de Buruli/prevenção & controle , Dieta Cetogênica , Macrolídeos , Mycobacterium ulcerans , Animais , Modelos Animais de Doenças , Camundongos , Cicatrização
14.
PeerJ ; 8: e9659, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32844063

RESUMO

BACKGROUND: Mycobacterium ulcerans is the causative agent of a debilitating skin and soft tissue infection known as Buruli ulcer (BU). There is no vaccine against BU. The purpose of this study was to investigate the vaccine potential of two previously described immunogenic M. ulcerans proteins, MUL_3720 and Hsp18, using a mouse tail infection model of BU. METHODS: Recombinant versions of the two proteins were each electrostatically coupled with a previously described lipopeptide adjuvant. Seven C57BL/6 and seven BALB/c mice were vaccinated and boosted with each of the formulations. Vaccinated mice were then challenged with M. ulcerans via subcutaneous tail inoculation. Vaccine performance was assessed by time-to-ulceration compared to unvaccinated mice. RESULTS: The MUL_3720 and Hsp18 vaccines induced high titres of antigen-specific antibodies that were predominately subtype IgG1. However, all mice developed ulcers by day-40 post-M. ulcerans challenge. No significant difference was observed in the time-to-onset of ulceration between the experimental vaccine groups and unvaccinated animals. CONCLUSIONS: These data align with previous vaccine experiments using Hsp18 and MUL_3720 that indicated these proteins may not be appropriate vaccine antigens. This work highlights the need to explore alternative vaccine targets and different approaches to understand the role antibodies might play in controlling BU.

15.
Commun Biol ; 3(1): 177, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313116

RESUMO

Buruli ulcer, caused by Mycobacterium ulcerans and characterized by devastating necrotizing skin lesions, is the third mycobacterial disease worldwide. The role of host genetics in susceptibility to Buruli ulcer has long been suggested. We conduct the first genome-wide association study of Buruli ulcer on a sample of 1524 well characterized patients and controls from rural Benin. Two-stage analyses identify two variants located within LncRNA genes: rs9814705 in ENSG00000240095.1 (P = 2.85 × 10-7; odds ratio = 1.80 [1.43-2.27]), and rs76647377 in LINC01622 (P = 9.85 × 10-8; hazard ratio = 0.41 [0.28-0.60]). Furthermore, we replicate the protective effect of allele G of a missense variant located in ATG16L1, previously shown to decrease bacterial autophagy (rs2241880, P = 0.003; odds ratio = 0.31 [0.14-0.68]). Our results suggest LncRNAs and the autophagy pathway as critical factors in the development of Buruli ulcer.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Úlcera de Buruli/genética , Mutação de Sentido Incorreto , Mycobacterium ulcerans/patogenicidade , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Adolescente , Adulto , Benin , Úlcera de Buruli/diagnóstico , Úlcera de Buruli/microbiologia , Estudos de Casos e Controles , Criança , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , Humanos , Masculino , Fenótipo , Medição de Risco , Fatores de Risco , Adulto Jovem
16.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31818964

RESUMO

The neglected tropical disease Buruli ulcer (BU) is an infection of subcutaneous tissue with Mycobacterium ulcerans There is no effective vaccine. Here, we assessed an experimental prime-boost vaccine in a low-dose murine tail infection model. We used the enoyl reductase (ER) domain of the M. ulcerans mycolactone polyketide synthases electrostatically coupled with a previously described Toll-like receptor 2 (TLR-2) agonist-based lipopeptide adjuvant, R4Pam2Cys. Mice were vaccinated and then challenged via tail inoculation with 14 to 20 CFU of a bioluminescent strain of M. ulcerans Mice receiving either the experimental ER vaccine or Mycobacterium bovis bacillus Calmette-Guérin (BCG) were equally protected, with both groups faring significantly better than nonvaccinated animals (P < 0.05). To explore potential correlates of protection, a suite of 29 immune parameters were assessed in the mice at the end of the experimental period. Multivariate statistical approaches were used to interrogate the immune response data to develop disease-prognostic models. High levels of interleukin 2 (IL-2) and low gamma interferon (IFN-γ) produced in the spleen best predicted control of infection across all vaccine groups. Univariate logistic regression revealed vaccine-specific profiles of protection. High titers of ER-specific IgG serum antibodies together with IL-2 and IL-4 in the draining lymph node (DLN) were associated with protection induced by the ER vaccine. In contrast, high titers of IL-6, tumor necrosis factor alpha (TNF-α), IFN-γ, and IL-10 in the DLN and low IFN-γ titers in the spleen were associated with protection following BCG vaccination. This study suggests that an effective BU vaccine must induce localized, tissue-specific immune profiles with controlled inflammatory responses at the site of infection.


Assuntos
Vacinas Bacterianas/imunologia , Úlcera de Buruli , Mycobacterium ulcerans/imunologia , Vacinação/métodos , Animais , Vacina BCG/imunologia , Úlcera de Buruli/imunologia , Úlcera de Buruli/prevenção & controle , Interleucinas/metabolismo , Camundongos , Análise Multivariada
17.
Int J Infect Dis ; 89: 128-130, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31585214

RESUMO

Mycobacterium ulcerans is the causal agent of Buruli ulcer, a neglected tropical disease with cutaneous tropism. We report a case of Buruli ulcer in a patient who travelled in Senegal, a country not identified by the World Health Organization as being endemic for this disease. This case is the third case of Buruli ulcer reported as having been contracted in Senegal, showing the urgent need to develop data collection in this country by having an active community-based surveillance-response system.


Assuntos
Úlcera de Buruli/microbiologia , Idoso , Úlcera de Buruli/diagnóstico , Úlcera de Buruli/epidemiologia , Humanos , Masculino , Mycobacterium ulcerans/genética , Mycobacterium ulcerans/isolamento & purificação , Mycobacterium ulcerans/fisiologia , Senegal/epidemiologia
18.
Toxins (Basel) ; 11(9)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487908

RESUMO

Pain currently represents the most common symptom for which medical attention is sought by patients. The available treatments have limited effectiveness and significant side-effects. In addition, most often, the duration of analgesia is short. Today, the handling of pain remains a major challenge. One promising alternative for the discovery of novel potent analgesics is to take inspiration from Mother Nature; in this context, the detailed investigation of the intriguing analgesia implemented in Buruli ulcer, an infectious disease caused by the bacterium Mycobacterium ulcerans and characterized by painless ulcerative lesions, seems particularly promising. More precisely, in this disease, the painless skin ulcers are caused by mycolactone, a polyketide lactone exotoxin. In fact, mycolactone exerts a wide range of effects on the host, besides being responsible for analgesia, as it has been shown notably to modulate the immune response or to provoke apoptosis. Several cellular mechanisms and different targets have been proposed to account for the analgesic effect of the toxin, such as nerve degeneration, the inhibition of inflammatory mediators and the activation of angiotensin II receptor 2. In this review, we discuss the current knowledge in the field, highlighting possible controversies. We first discuss the different pain-mimicking experimental models that were used to study the effect of mycolactone. We then detail the different variants of mycolactone that were used in such models. Overall, based on the results and the discussions, we conclude that the development of mycolactone-derived molecules can represent very promising perspectives for new analgesic drugs, which could be effective for specific pain indications.


Assuntos
Analgésicos/uso terapêutico , Macrolídeos/uso terapêutico , Dor/tratamento farmacológico , Animais , Humanos
19.
Front Pharmacol ; 10: 378, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031626

RESUMO

Mycobacterium ulcerans is the bacillus responsible for Buruli ulcer, an infectious disease and the third most important mycobacterial disease worldwide, after tuberculosis and leprosy. M. ulcerans infection is a type of panniculitis beginning mostly with a nodule or an oedema, which can progress to large ulcerative lesions. The lesions are caused by mycolactone, the polyketide toxin of M. ulcerans. Mycolactone plays a central role for host colonization as it has immunomodulatory and analgesic effects. On one hand, mycolactone induces analgesia by targeting type-2 angiotensin II receptors (AT2R), causing cellular hyperpolarization and neuron desensitization. Indeed, a single subcutaneous injection of mycolactone into the mouse footpad induces a long-lasting hypoesthesia up to 48 h. It was suggested that the long-lasting hypoesthesia may result from the persistence of a significant amount of mycolactone locally following its injection, which could be probably due to its slow elimination from tissues. To verify this hypothesis, we investigated the correlation between hypoesthesia and mycolactone bioavailability directly at the tissue level. Various quantities of mycolactone were then injected in mouse tissue and hypoesthesia was recorded with nociception assays over a period of 48 h. The hypoesthesia was maximal 6 h after the injection of 4 µg mycolactone. The basal state was reached 48 h after injection, which demonstrated the absence of nerve damage. Surprisingly, mycolactone levels decreased strongly during the first hours with a reduction of 70 and 90% after 4 and 10 h, respectively. Also, mycolactone did not diffuse in neighboring skin tissue and only poorly into the bloodstream upon direct injection. Nevertheless, the remaining amount was sufficient to induce hypoesthesia during 24 h. Our results thus demonstrate that intact mycolactone is rapidly eliminated and that very small amounts of mycolactone are sufficient to induce hypoesthesia. Taken together, our study points out that mycolactone ought to be considered as a promising analgesic.

20.
PLoS Negl Trop Dis ; 12(4): e0006429, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29708969

RESUMO

Buruli ulcer (BU), the third most frequent mycobacteriosis worldwide, is a neglected tropical disease caused by Mycobacterium ulcerans. We report the clinical description and extensive genetic analysis of a consanguineous family from Benin comprising two cases of unusually severe non-ulcerative BU. The index case was the most severe of over 2,000 BU cases treated at the Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli, Pobe, Benin, since its opening in 2003. The infection spread to all limbs with PCR-confirmed skin, bone and joint infections. Genome-wide linkage analysis of seven family members was performed and whole-exome sequencing of both patients was obtained. A 37 kilobases homozygous deletion confirmed by targeted resequencing and located within a linkage region on chromosome 8 was identified in both patients but was absent from unaffected siblings. We further assessed the presence of this deletion on genotyping data from 803 independent local individuals (402 BU cases and 401 BU-free controls). Two BU cases were predicted to be homozygous carriers while none was identified in the control group. The deleted region is located close to a cluster of beta-defensin coding genes and contains a long non-coding (linc) RNA gene previously shown to display highest expression values in the skin. This first report of a microdeletion co-segregating with severe BU in a large family supports the view of a key role of human genetics in the natural history of the disease.


Assuntos
Úlcera de Buruli/genética , Cromossomos Humanos Par 8/genética , Mycobacterium ulcerans/fisiologia , Adolescente , Benin , Úlcera de Buruli/microbiologia , Pré-Escolar , Consanguinidade , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Linhagem , Fenótipo , Deleção de Sequência , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...