Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400729, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597368

RESUMO

Wireless radiofrequency rectifiers have the potential to power the billions of "Internet of Things" (IoT) devices currently in use by effectively harnessing ambient electromagnetic radiation. However, the current technology relies on the implementation of rectifiers based on Schottky diodes, which exhibit limited capabilities for high-frequency and low-power applications. Consequently, they require an antenna to capture the incoming signal and amplify the input power, thereby limiting the possibility of miniaturizing devices to the millimeter scale. Here, the authors report wireless rectification at the GHz range in a microscale device built on single chiral tellurium with extremely low input powers. By studying the crystal symmetry and the temperature dependence of the rectification, the authors demonstrate that its origin is the intrinsic nonlinear conductivity of the material. Additionally, the unprecedented ability to modulate the rectification output by an electrostatic gate is shown. These results open the path to developing tuneable microscale wireless rectifiers with a single material.

2.
Phys Rev Lett ; 132(4): 046303, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335368

RESUMO

Electrical transport in noncentrosymmetric materials departs from the well-established phenomenological Ohm's law. Instead of a linear relation between current and electric field, a nonlinear conductivity emerges along specific crystallographic directions. This nonlinear transport is fundamentally related to the lack of spatial inversion symmetry. However, the experimental implications of an inversion symmetry operation on the nonlinear conductivity remain to be explored. Here, we report on a large, nonlinear conductivity in chiral tellurium. By measuring samples with opposite handedness, we demonstrate that the nonlinear transport is odd under spatial inversion. Furthermore, by applying an electrostatic gate, we modulate the nonlinear output by a factor of 300, reaching the highest reported value excluding engineered heterostructures. Our results establish chiral tellurium as an ideal compound not just to study the fundamental interplay between crystal structure, symmetry operations and nonlinear transport; but also to develop wireless rectifiers and energy-harvesting chiral devices.

3.
Children (Basel) ; 11(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397251

RESUMO

BACKGROUND: Childhood myopia represents a global concern with increasing prevalence in recent decades. Lifestyle factors significantly impact myopia. AIM: To evaluate lifestyle factors in myopic children from a metropolitan area in Europe. METHODS: This was a descriptive study including myopic subjects aged 4-18 years. Patient demographic and clinical data were collected, including cycloplegic refraction in spherical equivalent refraction (SER) and axial length (AL). In addition, a questionnaire on lifestyle factors was conducted between September 2022 and April 2023. RESULTS: A total of 321 myopic children were included, aged 10.72 ± 3.05 years, of whom 51.4% were boys, with SER -2.25 ± 1.9 D and AL 24.54 ± 0.98 mm. The mean age of myopia onset was 7.69 ± 3.05 years. A total of 59.8% had family history of myopia. Those children who had <2 h/day of screen time (on weekdays) presented SER -2 ± 1.91 D, compared to those who had >2 h/day, SER: -2.50 ±1.88 D (p = 0.009). Children who spent <2 h/day doing near work after school were less myopic compared to those who spent >2 h/day (SER: -1.75 ± 1.83 vs. SER: -2.75 ± 1.82, respectively, p = 0.03). However, no significant association was observed between SER and AL and time spent outdoors nor between SER and AL and academic performance (p > 0.05). CONCLUSIONS: Screen time and near-work time appear to be lifestyle factors related to myopia.

4.
Adv Mater ; 36(18): e2310768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237911

RESUMO

A charge density wave (CDW) represents an exotic state in which electrons are arranged in a long-range ordered pattern in low-dimensional materials. Although the understanding of the fundamental character of CDW is enriched after extensive studies, its practical application remains limited. Here, an unprecedented demonstration of a tunable charge-spin interconversion (CSI) in graphene/1T-TaS2 van der Waals heterostructures is shown by manipulating the distinct CDW phases in 1T-TaS2. Whereas CSI from spins polarized in all three directions is observed in the heterostructure when the CDW phase does not show commensurability, the output of one of the components disappears, and the other two are enhanced when the CDW phase becomes commensurate. The experimental observation is supported by first-principles calculations, which evidence that chiral CDW multidomains in the heterostructure are at the origin of the switching of CSI. The results uncover a new approach for on-demand CSI in low-dimensional systems, paving the way for advanced spin-orbitronic devices.

5.
J Agric Food Chem ; 71(42): 15842-15854, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37846851

RESUMO

A polyhydroxy methacrylate-based stationary reversed phase was used for the determination of coformulants in 20 plant protection products (PPPs). These samples were analyzed by liquid chromatography coupled to Q-Orbitrap high-resolution mass spectrometry (LC-Q-Orbitrap-HRMS) in full-scan MS and data-dependent acquisition (ddMS2) modes. A total of 92 coformulants were tentatively identified in these formulations by nontargeted and unknown analyses. Twelve out of them were quantified by analytical standards. The most concentrated coformulant was the anionic surfactant dodecylbenzenesulfonic acid, whose highest content was obtained in the Score 25 sample (6.87%, w/v). Furthermore, triethylene glycol monomethyl ether, 4-s-butyl-2,6-di-tert-butylphenol, 1-ethyl-2-pyrrolidone, sorbitan monostearate, 2,6-dimethylaniline, palmitamide, and N-lauryldiethanolamine were quantified for the first time in these products. Hence, the polyhydroxy methacrylate-based stationary phase increased the identification of new coformulants in PPPs, being complementary to conventional C18. This strategy could be applied in future studies to estimate potential coformulant residues from PPPs applied to crops.


Assuntos
Cromatografia Líquida , Cromatografia Líquida/métodos , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos
6.
ACS Appl Mater Interfaces ; 15(23): 28166-28174, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259773

RESUMO

One major concern toward the performance and stability of halide perovskite-based optoelectronic devices is the formation of metallic lead that promotes nonradiative recombination of charge carriers. The origin of metallic lead formation is being disputed whether it occurs during the perovskite synthesis or only after light, electron, or X-ray beam irradiation or thermal annealing. Here, we show that the quantity of metallic lead detected in perovskite crystals depends on the concentration and composition of the precursor solution. Through a controlled crystallization process, we grew black-colored mixed dimethylammonium (DMA)/methylammonium (MA) lead tribromide crystals. The black color is suggested to be due to the presence of small lead clusters. Despite the unexpected black coloring, the crystals show higher crystallinity and less defect density with respect to the standard yellow-colored DMA/MAPbBr3 crystals, as indicated by X-ray rocking curve and dark current measurements, respectively. While the formation of metallic lead could still be induced by external factors, the precursor solution composition and concentration can facilitate the formation of metallic lead during the crystallization process. Our results indicate that additional research is required to fully understand the perovskite precursor solution chemistry.

7.
Nano Lett ; 23(10): 4406-4414, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37140909

RESUMO

Graphene is a light material for long-distance spin transport due to its low spin-orbit coupling, which at the same time is the main drawback for exhibiting a sizable spin Hall effect. Decoration by light atoms has been predicted to enhance the spin Hall angle in graphene while retaining a long spin diffusion length. Here, we combine a light metal oxide (oxidized Cu) with graphene to induce the spin Hall effect. Its efficiency, given by the product of the spin Hall angle and the spin diffusion length, can be tuned with the Fermi level position, exhibiting a maximum (1.8 ± 0.6 nm at 100 K) around the charge neutrality point. This all-light-element heterostructure shows a larger efficiency than conventional spin Hall materials. The gate-tunable spin Hall effect is observed up to room temperature. Our experimental demonstration provides an efficient spin-to-charge conversion system free from heavy metals and compatible with large-scale fabrication.

8.
Ophthalmic Physiol Opt ; 43(5): 1059-1064, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37113034

RESUMO

INTRODUCTION: While optical coherence tomography (OCT) measurements of the lower tear meniscus height (LTMH) have been reported in adults, here we obtained LTMH measurements through Fourier Domain OCT in healthy children and compared these with values obtained in healthy adults. METHODS: Participants were children 7-17 years of age and a control group of adults 20-40 years of age. Inclusion criteria were no abnormal eye conditions or the use of contact lenses. Candidates who fulfilled the TFOS DEWS II criteria for dry eye disease (DED) were excluded. All subjects underwent LTMH measurement (OCT Spectralis) and tests for non-invasive tear break-up time and ocular surface staining. Participants also completed the ocular surface disease index questionnaire. RESULTS: A total of 86 children and 27 adults were included. Mean LTMH values in the children and adult groups were 217.40 ± 71.40 µm and 225.0 ± 54.86 µm, respectively; p = 0.53. However, 59.3% of the children had an LTMH ≤210 µm suggestive of DED, compared with only 33.3% of adults (p = 0.02). For the children, no significant differences in LTMH were observed with sex or for those more or less than 12 years of age. CONCLUSIONS: Optical coherence tomography-derived LTMH measurements were obtained in healthy children. While values were similar in children and adults, a greater proportion of children had an LTMH compatible with a diagnosis of DED. More studies in different paediatric populations are required to establish a complete set of normative LTMH measurements.


Assuntos
Síndromes do Olho Seco , Menisco , Adulto , Humanos , Criança , Tomografia de Coerência Óptica/métodos , Síndromes do Olho Seco/diagnóstico , Lágrimas , Inquéritos e Questionários
9.
Mar Drugs ; 21(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36976239

RESUMO

This study investigates the potential of utilizing three food wastes: cheese whey (CW), beet molasses (BM), and corn steep liquor (CSL) as alternative nutrient sources for the cultivation of the diatom Phaeodactylum tricornutum, a promising source of polyunsaturated eicosapentaenoic acid (EPA) and the carotenoid fucoxanthin. The CW media tested did not significantly impact the growth rate of P. tricornutum; however, CW hydrolysate significantly enhances cell growth. BM in cultivation medium enhances biomass production and fucoxanthin yield. The optimization of the new food waste medium was conducted through the application of a response surface methodology (RSM) using hydrolyzed CW, BM, and CSL as factors. The results showed a significant positive impact of these factors (p < 0.005), with an optimized biomass yield of 2.35 g L-1 and a fucoxanthin yield of 3.64 mg L-1 using a medium composed of 33 mL L-1 of CW, 2.3 g L-1 of BM, and 2.24 g L-1 of CSL. The experimental results reported in this study showed that some food by-products from a biorefinery perspective could be utilized for the efficient production of fucoxanthin and other high-added-value products such as eicosapentaenoic acid (EPA).


Assuntos
Queijo , Diatomáceas , Ácidos Graxos Ômega-3 , Microalgas , Eliminação de Resíduos , Ácidos Graxos Ômega-3/metabolismo , Ácido Eicosapentaenoico , Soro do Leite , Diatomáceas/metabolismo , Antioxidantes/metabolismo , Proteínas do Soro do Leite/metabolismo , Microalgas/metabolismo
10.
J Phys Chem Lett ; 14(10): 2620-2626, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36888728

RESUMO

Transition metal dichalcogenides (TMDs) are nanostructured semiconductors with prospects in optoelectronics and photocatalysis. Several bottom-up procedures to synthesize such materials have been developed yielding colloidal transition metal dichalcogenides (c-TMDs). Where such methods initially yielded multilayered sheets with indirect band gaps, recently, also the formation of monolayered c-TMDs became possible. Despite these advances, no clear picture on the charge carrier dynamics in monolayer c-TMDs exists to date. Here, we show through broadband and multiresonant pump-probe spectroscopy, that the carrier dynamics in monolayer c-TMDs are dominated by a fast electron trapping mechanism, universal to both MoS2 and MoSe2, contrasting hole-dominated trapping in their multilayered counterparts. Through a detailed hyperspectral fitting procedure, sizable exciton red shifts are found and assigned to static shifts originating from both interactions with the trapped electron population and lattice heating. Our results pave the way to optimizing monolayer c-TMDs via passivation of predominantly the electron-trap sites.

11.
Nanoscale ; 14(42): 15859-15868, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36259965

RESUMO

Transition metal dichalcogenides (TMDs) are a class of materials that have been extensively studied in the last decade, with molybdenum disulfide (MoS2) being the main protagonist. Typically, the interesting TMD properties, e.g. a direct band gap transition, or broken inversion symmetry, are only present in monolayer thick TMDs, and in the absence of strong lateral confinement, we require different materials or alloys thereof when we want to obtain TMDs with varying (direct) band gap energies. With this in mind, tungsten disulfide (WS2) is emerging as a direct competitor of MoS2 due to its similar properties but larger band gap energy. While several colloidal strategies have been reported for the synthesis of WS2, the synthesis of monolayer WS2 and detailed studies on the effect of synthesis parameters on the synthesis outcome have remained elusive. In this work we therefore focused on a colloidal synthesis method for monolayer WS2 using a design of experiment (DOE) approach. After optimization, we obtained nanosheets with a band gap transition consistent with the expected value for a monolayer. The thickness was further confirmed by Raman spectroscopy. While we could identify two temperature ranges where we could obtain a monolayer, sample characterization by XPS spectroscopy revealed the presence of different ratios of the metallic phase, with the sample synthesized at lower temperature displaying a lower concentration of the metallic phase.

12.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36139767

RESUMO

Extraction of valuable bioactive compounds from olive leaves is a hot topic and the use of sustainable and green technologies is mandatory in terms of circular economy. In this way, the use of fermentation technologies showed very interesting results in terms of phenolic compound recovery. Because of that in this work the use of solid state fermentations, as valuable tool to improve the phenolic extraction has been checked. Aspergillus oryzae (in mycelium and spore form), Aspergillus awamori and Aspergillus niger were used as fermentation microrganisms. Phenolic compounds were determined by HPLC-ESI-TOF-MS and, to our knowledge, new compounds have been tentatively identified in olive leaves. Fermentation using mycelium of Aspergillus awamori, Aspergillus niger and Aspergillus oryzae were effective to increase both hydroxytyrosol and elenolic acid derivatives whereas the use of spores of Aspergillus oryzae caused a loss of hydroxytyrosoyl derivatives, contrary the content of elenolic derivatives are comparable with the other fermentation treatments and higher than control. The proposed fermentation processes using the mycelium of Aspergillus awamori, Aspergillus niger and Aspergillus oryzae lead to an increase the hydroxytyrosyl and elenolic acid derivatives and could be used at industrial scale to obtain enriched extracts.

13.
Plants (Basel) ; 11(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956511

RESUMO

The leaves of Annona cherimola Mill (cherimoya) are a potential source of phenolic compounds that have been shown to have beneficial properties. Therefore, this study focuses on establishing an ultrasonic-assisted extraction of phenolic compounds in cherimoya leaves using a sonotrode. For that purpose, a Box-Behnken design based on a response surface methodology (RSM) was used to optimize factors, such as amplitude, extraction time and solvent composition to obtain the maximum content of phenolic compounds by HPLC-MS and the maximum in-vitro antioxidant activity by DPPH, ABTS and FRAP assays in 'Fino de Jete' cherimoya leaves. The optimal conditions were 70% amplitude, 10 min and 40:60 ethanol/water (EtOH/H2O) (v/v). The results obtained under these optimum conditions by using a sonotrode were compared with those from an ultrasonic bath; briefly, recovery of phenolic compounds by sonotrode was 2.3 times higher than a bath. Therefore, these optimal conditions were applied to different varieties 'Campas', 'Fino de Jete' and 'Negrito Joven' harvested in the Tropical Coast of Granada (Spain). A total of 39 phenolic compounds were determined in these cherimoya leaf extracts, 24 phenolic compounds by HPLC-MS and 15 proanthocianidins by HPLC-FLD. 5-p-coumaroylquinic acid, lathyroside-7-O-α-l-rhamnopyranoside and quercetin hexose acetate were first identified in cherimoya leaves. The most concentrated phenolic compounds were the flavonoids, such as rutin and quercetin hexoside and proanthocyanidins including monomers. Almost no significant differences in the phenolic content in these cultivars were found (11-13 mg/g d.w. for phenolic compounds and 11-20 mg/g d.w. for proanthocyanidins). In addition, sonotrode ultrasonic-assisted extraction has been shown to be an efficient extraction technique in the phenolic recovery from cherimoya leaves that could be implemented on an industrial scale.

14.
Nanoscale ; 14(16): 6152-6161, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35389414

RESUMO

In this work, novel proton-exchange membranes (PEMs) based on sulfonated poly(ether ether ketone) (SPEEK) and two-dimensional (2D) sulfonated niobium disulphide (S-NbS2) nanoflakes are synthesized by a solution-casting method and used in vanadium redox flow batteries (VRFBs). The NbS2 nanoflakes are produced by liquid-phase exfoliation of their bulk counterpart and chemically functionalized with terminal sulfonate groups to improve dimensional and chemical stabilities, proton conductivity (σ) and fuel barrier properties of the as-produced membranes. The addition of S-NbS2 nanoflakes to SPEEK decreases the vanadium ion permeability from 5.42 × 10-7 to 2.34 × 10-7 cm2 min-1. Meanwhile, it increases the membrane σ and selectivity up to 94.35 mS cm-2 and 40.32 × 104 S min cm-3, respectively. The cell assembled with the optimized membrane incorporating 2.5 wt% of S-NbS2 nanoflakes (SPEEK:2.5% S-NbS2) exhibits high efficiency metrics, i.e., coulombic efficiency between 98.7 and 99.0%, voltage efficiency between 90.2 and 73.2% and energy efficiency between 89.3 and 72.8% within the current density range of 100-300 mA cm-2, delivering a maximum power density of 0.83 W cm-2 at a current density of 870 mA cm-2. The SPEEK:2.5% S-NbS2 membrane-based VRFBs show a stable behavior over 200 cycles at 200 mA cm-2. This study opens up an effective avenue for the production of advanced SPEEK-based membranes for VRFBs.

15.
Nano Lett ; 22(10): 4153-4160, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35435688

RESUMO

Strain is an effective strategy to modulate the optoelectronic properties of 2D materials, but it has been almost unexplored in layered hybrid organic-inorganic metal halide perovskites (HOIPs) due to their complex band structure and mechanical properties. Here, we investigate the temperature-dependent microphotoluminescence (PL) of 2D (C6H5CH2CH2NH3)2Cs3Pb4Br13 HOIP subject to biaxial strain induced by a SiO2 ring platform on which flakes are placed by viscoelastic stamping. At 80 K, we found that a strain of <1% can change the PL emission from a single peak (unstrained) to three well-resolved peaks. Supported by micro-Raman spectroscopy, we show that the thermomechanically generated strain modulates the bandgap due to changes in the octahedral tilting and lattice expansion. Mechanical simulations demonstrate the coexistence of tensile and compressive strain along the flake. The observed PL peaks add an interesting feature to the rich phenomenology of photoluminescence in 2D HOIPs, which can be exploited in tailored sensing and optoelectronic devices.

16.
Antioxidants (Basel) ; 11(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326208

RESUMO

A sonotrode ultrasound-assisted extraction of phenolic compounds from olive leaves has been developed using a Box-Behnken design to optimize the effects of solvent composition and ultrasound parameters. The determination of single phenolic compounds was performed by HPLC-MS and the highest recovery in total compounds, oleuropein and hydroxytyrosol was achieved using EtOH/H2O (55:45, v/v), 8 min and 100% of amplitude. The optimal conditions were applied on leaves from seven olive cultivars grown under the same conditions and the results were compared with those found by using a conventional ultrasonic bath, obtaining no statistical differences. Moreover, antioxidant activity by FRAP, DPPH and ABTS in these olive leaf extracts was evaluated and they exhibited a significant correlation with oleuropein and total phenolic content. All cultivars of olive leaf extracts were found to be active against S. aureus and methicillin-resistant S. aureus with minimum bactericidal concentration (MBC) values) that ranged from 5.5 to 22.5 mg mL-1. No extracts showed antimicrobial activity against C. albicans. The percentages of mycelium reduction in B. cinerea ranged from 2.2 and 18.1%. Therefore, sonotrode could be considered as an efficient and fast extraction technique that could be easily scaled-up at industrial level, thus allowing for olive leaves to be revalorized.

17.
Adv Mater ; 34(21): e2200474, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35334502

RESUMO

The exfoliation of layered magnetic materials generates atomically thin flakes characterized by an ultrahigh surface sensitivity, which makes their magnetic properties tunable via external stimuli, such as electrostatic gating and proximity effects. Another powerful approach to engineer magnetic materials is molecular functionalization, generating hybrid interfaces with tailored magnetic interactions, called spinterfaces. However, spinterface effects have not yet been explored on layered magnetic materials. Here, the emergence of spinterface effects is demonstrated at the interface between flakes of the prototypical layered magnetic metal Fe3 GeTe2 and thin films of Co-phthalocyanine. Magnetotransport measurements show that the molecular layer induces a magnetic exchange bias in Fe3 GeTe2 , indicating that the unpaired spins in Co-phthalocyanine develop antiferromagnetic ordering and pin the magnetization reversal of Fe3 GeTe2 via magnetic proximity. The effect is strongest for a Fe3 GeTe2 thickness of 20 nm, for which the exchange bias field reaches -840 Oe at 10 K and is measurable up to ≈110 K. This value compares very favorably with previous exchange bias fields reported for Fe3 GeTe2 in all-inorganic van der Waals heterostructures, demonstrating the potential of molecular functionalization to tailor the magnetism of van der Waals layered materials.

18.
Nat Mater ; 21(5): 526-532, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35256792

RESUMO

Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear. Here, we demonstrate the all-electrical generation, manipulation and detection of spin polarization in chiral single-crystalline tellurium nanowires. By recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance, we show that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. Our results pave the way for the development of magnet-free chirality-based spintronic devices.


Assuntos
Nanofios , Eletricidade , Eletricidade Estática , Estereoisomerismo , Telúrio
19.
Foods ; 11(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159465

RESUMO

Phenolic compounds of Morus alba leaves are bioactive compounds with beneficial properties for human health. Therefore, in this study, an optimization of ultrasonic assisted extraction by Box-Behnken design was used for the first time to optimize factors such as the percentage of ethanol, ratio solvent/sample (v/w) and extraction time to reach the highest phenolic compound amounts (evaluated by HPLC-MS) while also evaluating in vitro antioxidant activity using DPPH, ABTS and FRAP assays. The optimal extraction conditions were 40% ethanol, 1/400 (w/v) and 35 min. Applying these optimal conditions, which were identified and quantified by HPLC-MS, resulted in the extraction of 21 phenolic compounds. According to these results, the main phenolic compounds in Morus alba leaves are the phenolic glycoside and phenolic acid named protocatechuic acid-glucoside and caffeoylquinic. In addition, Morus alba leaf extract contains flavonols such quercetin-3-O-6-acetylglucoside and rutin, which represent more than 7% of its total phenolic content.

20.
Nanoscale ; 14(4): 1165-1173, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35018950

RESUMO

Atomically thin van der Waals magnetic crystals are characterized by tunable magnetic properties related to their low dimensionality. While electrostatic gating has been used to tailor their magnetic response, chemical approaches like intercalation remain largely unexplored. Here, we demonstrate the manipulation of the magnetism in the van der Waals antiferromagnet NiPS3 through the intercalation of different organic cations, inserted using an engineered two-step process. First, the electrochemical intercalation of tetrabutylammonium cations (TBA+) results in a ferrimagnetic hybrid compound displaying a transition temperature of 78 K, and characterized by a hysteretic behavior with finite remanence and coercivity. Then, TBA+ cations are replaced by cobaltocenium via an ion-exchange process, yielding a ferrimagnetic phase with higher transition temperature (98 K) and higher remanent magnetization. Importantly, we demonstrate that the intercalation and cation exchange processes can be carried out in bulk crystals and few-layer flakes, opening the way to the integration of intercalated magnetic materials in devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...