Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38556794

RESUMO

Spinal cord injury (SCI) is a debilitating condition currently lacking treatment. Severe SCI causes the loss of most supraspinal inputs and neuronal activity caudal to the injury, which, coupled with the limited endogenous capacity for spontaneous regeneration, can lead to complete functional loss even in anatomically incomplete lesions. We hypothesized that transplantation of mature dorsal root ganglia (DRGs) genetically modified to express the NaChBac sodium channel could serve as a therapeutic option for functionally complete SCI. We found that NaChBac expression increased the intrinsic excitability of DRG neurons and promoted cell survival and neurotrophic factor secretion in vitro. Transplantation of NaChBac-expressing dissociated DRGs improved voluntary locomotion 7 weeks after injury compared to control groups. Animals transplanted with NaChBac-expressing DRGs also possessed higher tubulin-positive neuronal fiber and myelin preservation, although serotonergic descending fibers remained unaffected. We observed early preservation of the corticospinal tract 14 days after injury and transplantation, which was lost 7 weeks after injury. Nevertheless, transplantation of NaChBac-expressing DRGs increased the neuronal excitatory input by an increased number of VGLUT2 contacts immediately caudal to the injury. Our work suggests that the transplantation of NaChBac-expressing dissociated DRGs can rescue significant motor function, retaining an excitatory neuronal relay activity immediately caudal to injury.

2.
Biomedicines ; 10(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36359255

RESUMO

Neural progenitor cells (NPCs) have been shown to serve as an efficient therapeutic strategy in different cell therapy approaches, including spinal cord injury treatment. Despite the reported beneficial effects of NPC transplantation, the low survival and differentiation rates constrain important limitations. Herein, a new methodology has been developed to overcome both limitations by applying a combination of wireless electrical and magnetic stimulation to NPCs seeded on aligned poly(lactic acid) nanofibrous scaffolds for in vitro cell conditioning prior transplantation. Two stimulation patterns were tested and compared, continuous (long stimulus applied once a day) and intermittent (short stimulus applied three times a day). The results show that applied continuous stimulation promotes NPC proliferation and preferential differentiation into oligodendrocytic and neuronal lineages. A neural-like phenotypic induction was observed when compared to unstimulated NPCs. In contrast, intermittent stimulation patterns did not affect NPC proliferation and differentiation to oligodendrocytes or astrocytes morphology with a detrimental effect on neuronal differentiation. This study provides a new approach of using a combination of electric and magnetic stimulation to induce proliferation and further neuronal differentiation, which would improve therapy outcomes in disorders such as spinal cord injury.

3.
Cell Mol Life Sci ; 79(8): 455, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904607

RESUMO

Neural progenitor cell (NPC) transplantation represents a promising treatment strategy for spinal cord injury (SCI); however, the underlying therapeutic mechanisms remain incompletely understood. We demonstrate that severe spinal contusion in adult rats causes transcriptional dysregulation, which persists from early subacute to chronic stages of SCI and affects nearly 20,000 genes in total tissue extracts. Functional analysis of this dysregulated transcriptome reveals the significant downregulation of cAMP signalling components immediately after SCI, involving genes such as EPAC2 (exchange protein directly activated by cAMP), PKA, BDNF, and CAMKK2. The ectopic transplantation of spinal cord-derived NPCs at acute or subacute stages of SCI induces a significant transcriptional impact in spinal tissue, as evidenced by the normalized expression of a large proportion of SCI-affected genes. The transcriptional modulation pattern driven by NPC transplantation includes the rescued expression of cAMP signalling genes, including EPAC2. We also explore how the sustained in vivo inhibition of EPAC2 downstream signalling via the intrathecal administration of ESI-05 for 1 week impacts therapeutic mechanisms involved in the NPC-mediated treatment of SCI. NPC transplantation in SCI rats in the presence and absence of ESI-05 administration prompts increased rostral cAMP levels; however, NPC and ESI-05 treated animals exhibit a significant reduction in EPAC2 mRNA levels compared to animals receiving only NPCs treatment. Compared with transplanted animals, NPCs + ESI-05 treatment increases the scar area (as shown by GFAP staining), polarizes microglia into an inflammatory phenotype, and increases the magnitude of the gap between NeuN + cells across the lesion. Overall, our results indicate that the NPC-associated therapeutic mechanisms in the context of SCI involve the cAMP pathway, which reduces inflammation and provides a more neuropermissive environment through an EPAC2-dependent mechanism.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Neuroproteção , Ratos , Traumatismos da Medula Espinal/patologia , Transplante de Células-Tronco/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-37015589

RESUMO

Optogenetics is an emerging discipline with multiple applications in neuroscience, allowing to study neuronal pathways or serving for therapeutic applications such as in the treatment of anxiety disorder, autism spectrum disorders (ASDs), or Parkinson's disease. More recently optogenetics is opening its way also to stem cell-based therapeutic applications for neuronal regeneration after stroke or spinal cord injury. The results of optogenetic stimulation are usually evaluated by immunofluorescence or flow cytometry, and the observation of transient responses after stimulation, as in cardiac electrophysiology studies, by optical microscopy. However, certain phenomena, such as the ultra-fast calcium waves acquisition upon simultaneous optogenetics, are beyond the scope of current instrumentation, since they require higher image resolution in real-time, employing for instance time-lapse confocal microscopy. Therefore, in this work, an optogenetic stimulation matrix controllable from a graphical user interface has been developed for its use with a standard 24-well plate for an inverted confocal microscope use and validated by using a photoactivable adenyl cyclase (bPAC) overexpressed in rat fetal cortical neurons and the consequent calcium waves propagation upon 100 ms pulsed blue light stimulation.

5.
Sci Rep ; 10(1): 16298, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004909

RESUMO

To identify new candidate genes in osteoporosis, mainly involved in epigenetic mechanisms, we compared whole gene-expression in osteoblasts (OBs) obtained from women undergoing hip replacement surgery due to fragility fracture and severe osteoarthritis. Then, we analyzed the association of several SNPs with BMD in 1028 women. Microarray analysis yielded 2542 differentially expressed transcripts belonging to 1798 annotated genes, of which 45.6% (819) were overexpressed, and 54.4% (979) underexpressed (fold-change between - 7.45 and 4.0). Among the most represented pathways indicated by transcriptome analysis were chondrocyte development, positive regulation of bone mineralization, BMP signaling pathway, skeletal system development and Wnt signaling pathway. In the translational stage we genotyped 4 SNPs in DOT1L, HEY2, CARM1 and DNMT3A genes. Raw data analyzed against inheritance patterns showed a statistically significant association between a SNP of DNMT3A and femoral neck-(FN) sBMD and primarily a SNP of CARM1 was correlated with both FN and lumbar spine-(LS) sBMD. Most of these associations remained statistically significant after adjusting for confounders. In analysis with anthropometric and clinical variables, the SNP of CARM1 unexpectedly revealed a close association with BMI (p = 0.000082), insulin (p = 0.000085), and HOMA-IR (p = 0.000078). In conclusion, SNPs of the DNMT3A and CARM1 genes are associated with BMD, in the latter case probably owing to a strong correlation with obesity and fasting insulin levels.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , DNA (Citosina-5-)-Metiltransferases/genética , Predisposição Genética para Doença/genética , Guanilato Ciclase/genética , Osteoporose/genética , Densidade Óssea/genética , Estudos de Casos e Controles , DNA Metiltransferase 3A , Perfilação da Expressão Gênica/métodos , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fraturas por Osteoporose/genética , Polimorfismo de Nucleotídeo Único/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
6.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396468

RESUMO

Neural progenitor cell (NPC) transplantation possesses enormous potential for the treatment of disorders and injuries of the central nervous system, including the replacement of lost cells or the repair of host neural circuity after spinal cord injury (SCI). Importantly, cell-based therapies in this context still require improvements such as increased cell survival and host circuit integration, and we propose the implementation of optogenetics as a solution. Blue-light stimulation of NPCs engineered to ectopically express the excitatory light-sensitive protein channelrhodopsin-2 (ChR2-NPCs) prompted an influx of cations and a subsequent increase in proliferation and differentiation into oligodendrocytes and neurons and the polarization of astrocytes from a pro-inflammatory phenotype to a pro-regenerative/anti-inflammatory phenotype. Moreover, neurons derived from blue-light-stimulated ChR2-NPCs exhibited both increased branching and axon length and improved axon growth in the presence of axonal inhibitory drugs such as lysophosphatidic acid or chondroitin sulfate proteoglycan. Our results highlight the enormous potential of optogenetically stimulated NPCs as a means to increase neuroregeneration and improve cell therapy outcomes for enhancing better engraftments and cell identity upon transplantation in conditions such as SCI.


Assuntos
Diferenciação Celular , Regeneração Nervosa , Células-Tronco Neurais/citologia , Neurônios/citologia , Oligodendroglia/citologia , Optogenética , Animais , Axônios , Sobrevivência Celular , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Oligodendroglia/fisiologia , Ratos , Ratos Sprague-Dawley , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...