Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34068268

RESUMO

The biomonitoring of atmospheric mercury (Hg) is an important topic in the recent scientific literature given the cost-benefit advantage of obtaining indirect measurements of gaseous Hg using biological tissues. Lichens, mosses, and trees are the most commonly used organisms, with many standardized methods for some of them used across European countries by scientists and pollution regulators. Most of the species used the uptake of gaseous Hg (plant leaves), or a mixture of gaseous and particulate Hg (mosses and lichens), but no method is capable of differentiating between main atmospheric Hg phases (particulate and gaseous), essential in a risk assessment. The purpose of this work was to evaluate different uptake patterns of biological tissues in terms of atmospheric Hg compounds. To accomplish this, the feasibility of two plant tissues from a tree commonly found in urban environments has been evaluated for the biomonitoring of gaseous Hg species in a Hg mining environment. Sampling included leaves and barks from Platanus hispanica and particulate matter from the atmosphere of the urban area around Almadén (south-central Spain), while analytical determinations included data for total Hg concentrations in biological and geological samples, Hg speciation data and total gaseous Hg (TGM). The results allowed us to identify the main Hg compounds in leaves and bark tissues and in atmospheric particulate matter, finding that leaves bioaccumulated only gaseous Hg (Hg0 and Hg2+), preferably during daylight hours, whereas the barks accumulated a combination of TGM and particulate bound Hg (PBM) during the day and at night. Subsequent merging of the atmospheric Hg speciation data obtained from leaves and barks allowed indicative maps of the main sources of TGM and PBM emissions to be obtained, thereby perfectly delimiting the main TGM and PBM sources in the urban area around Almadén. This method complements TGM biomonitoring systems already tested with other urban trees, adding the detection of PBM emission sources and, therefore, biomonitoring all Hg species present in the atmosphere. Scenarios other than mining sites should be evaluated to determine the utility of this method for Hg biospeciation in the atmosphere.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Monitoramento Biológico , Monitoramento Ambiental , Europa (Continente) , Mercúrio/análise , Casca de Planta/química , Espanha
2.
Environ Sci Pollut Res Int ; 25(35): 35312-35321, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30341760

RESUMO

This manuscript reported data for total suspended particulate matter (TSPM), particle-bound mercury (PBM), and total gaseous mercury (TGM) in Almadenejos, a rural zone of ancient Hg mining and metallurgical works. Concentrations of TSPM characterize the study site as being a rural area, with levels below 40 µg m-3 during most of the year and sporadic events involving dust intrusions from Africa. Mercury speciation of PM and nearby soils, which contain both cinnabar and organic Hg, confirms that the PM comes from local soil emissions involving the soils polluted by ancient metallurgical works. Conversely, PBM and TGM levels (average 1.8 ng m-3 and 88 ng m-3, respectively) define Almadenejos as a contaminated site similar to urban areas. A multiple linear regression analysis showed that evapotranspiration is the micrometeorological parameter that best explains the TSPM and PBM data, with the creation of a diurnal mixing layer being the main process involved in Hg emissions in the solid and gaseous states. Based on these findings, a micrometeorological-based model has been developed to acquire a complete set of daily PBM data and these were used to obtain dry deposition rates (317 µg m-2 year-1), which were seasonally distributed as 40% in summer, 33% in autumn, 16% in spring, and 11% in winter. In addition, an estimation of PBM emissions showed that 335 g year-1 can be suspended in the Almadenejos environment. A large proportion of this PBM should be removed from the atmosphere through dry deposition in a continuous Hg exchange at the soil-atmosphere interface. Mercury fractionation (cinnabar and organic Hg) can increase the risk to the human population and nearby ecosystems of Almadenejos.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Ambientais/análise , Metalurgia , Mineração , Material Particulado/análise , África , Atmosfera/análise , Poeira/análise , Monitoramento Ambiental , Poluição Ambiental/análise , Poluição Ambiental/estatística & dados numéricos , Humanos , Mercúrio/análise , Compostos de Mercúrio , Estações do Ano , Solo
3.
Environ Sci Technol ; 48(11): 6256-63, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24793970

RESUMO

To evaluate plant response to Hg stress, glutathione, phytochelatins, and their Hg complexes were analyzed using HPLC with amperometric detection in samples of Asparagus acutifolius grown in the Almadén mining district (Ciudad Real, Spain), one of the most Hg-contaminated sites in the world. Soils of the Almadén mining district, and specifically from the Almadenejos zone, are highly contaminated, with some zones having values above 4,000 µg Hg g(-1) soil. Although soils have an extremely high concentration of mercury, generally less than 2% is available for plants, as is shown by various soil extractions simulating bioavailability. In plants, Hg concentration increases depending on the content of Hg in soils. In addition, Hg levels in roots are higher than in aerial parts, which is a strategy of plants for protecting their more sensitive aerial parts from the deleterious effects of metal stress. The total content of phytochelatins (PCs) and their complexes are directly related with the amount of mercury in soils. These findings highlight the important role of thiol compounds and their metal complexes in capturing and fixing Hg from soils, giving plants the capacity to deal with the heavy metal toxicity of polluted soils.


Assuntos
Asparagus/efeitos dos fármacos , Glutationa/química , Mercúrio/toxicidade , Fitoquelatinas/química , Poluentes do Solo/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Asparagus/química , Asparagus/fisiologia , Glutationa/análise , Mercúrio/análise , Mineração , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/análise , Espanha , Estresse Fisiológico/fisiologia
4.
Environ Geochem Health ; 36(4): 713-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24379158

RESUMO

Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, [Formula: see text]), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration of atmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m(-3), that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m(-3)) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m(-3). We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au-Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical-chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Mercúrio/análise , China , Cidades , Coleta de Dados , Europa (Continente) , Mineração , África do Sul , América do Sul , Erupções Vulcânicas
5.
Environ Res ; 125: 197-208, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23477566

RESUMO

Two events during the last decade had major environmental repercussions in Almadén town (Spain). First it was the ceasing of activities in the mercury mine and metallurgical facilities in 2003, and then the finalization of the restoration works on the main waste dump in 2008. The combination of both events brought about a dramatic drop in the emissions of gaseous elemental mercury (GEM) to the atmosphere. Although no one would now call the Almadén area as 'mercury-free', the GEM levels have fallen beneath international reference safety levels for the first time in centuries. This has been a major breakthrough because in less than one decade the site went from GEM levels in the order of "tens of thousands" to mere "tens" nanogram per cubic meter. Although these figures are per se a remarkable achievement, they do not mark the end of the environmental concerns in the Almadén district. Two other sites remain as potential environmental hazards. (1) The Las Cuevas mercury storage complex, a partially restored ex-mining site where liquid mercury is being stored. The MERSADE Project (LIFE-European Union) has tested the Las Cuevas complex as a potential site for the installation of a future European prototype safe deposit of surplus mercury from industrial activities. Despite restoration works carried out in 2004, the Las Cuevas complex can still be regarded as hotspot of mercury contamination, with high concentrations above 800µgg(-1) Hgsoil and 300ngm(-3) Hggas. However, as predicted by air contamination modeling using the ISC-AERMOD software, GEM concentrations fade away in a short distance following the formation of a NW-SE oriented narrow plume extending for a few hundred meters from the complex perimeter. (2) Far more dangerous from the human health perspective is the Almadenejos area, hosting the small Almadenejos village, the so-called Cerco de Almadenejos (CDA; an old metallurgical precinct), and the mines of La Nueva Concepción, La Vieja Concepción and El Entredicho. The CDA is an old metallurgical site that operated between 1794 and 1861, leaving behind a legacy of extremely contaminated soils (mean concentration=4220µgg(-1) Hg) and GEM emissions that in summer can reach levels up to 4,000-5,000ngm(-3). Thus the CDA remains the sole 'urban' site in the district surpassing GEM international reference safety levels. In order to prevent these emissions, the CDA requires immediate action regarding restoration works. These could involve the full removal of soils or their permanent capping to create an impermeable barrier.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/normas , Monitoramento Ambiental/estatística & dados numéricos , Recuperação e Remediação Ambiental/métodos , Mercúrio/análise , Metalurgia , Mineração , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental/estatística & dados numéricos , Humanos , Modelos Teóricos , Espanha
6.
Environ Res ; 125: 179-87, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23477568

RESUMO

The Mt. Amiata volcano is the youngest and largest volcanic edifice in Tuscany (central-northern Italy) and is characterized by a geothermal field, exploited for the production of electrical energy. In the past Mt. Amiata was also known as a world-class Hg district whose mining activity was mainly distributed in the central-eastern part of this silicic volcanic complex, and particularly in the municipality of Abbadia San Salvatore. In the present work we report a geochemical survey on Hg(0) measurements related to the former mercury mine facilities prior the reclamation project. The Hg(0) measurements were carried out by car for long distance regional surveys, and on foot for local scale surveys by using two LUMEX (915+ and M) devices. This study presents the very first Hg(0) data obtained with this analytical technique in the Mt. Amiata area. The facilities related to the mining areas and structures where cinnabar was converted to metallic Hg are characterized by high Hg values (>50,000ngm(-3)), although the urban center of Abbadia San Salvatore, few hundred meters away, does not appear to be receiving significant pollution from the calcine area and former industrial edifices, all the recorded values being below the values recommended by the issuing Tuscany Region authorities (300ngm(-3)) and in some cases approaching the Hg background levels (3-5ngm(-3)) for the Mt. Amiata area.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/estatística & dados numéricos , Mercúrio/análise , Mineração , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental , Itália , Espectrofotometria Atômica/instrumentação , Espectrofotometria Atômica/métodos , Temperatura , Vento
7.
Chemosphere ; 84(5): 571-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21524785

RESUMO

Mercury exposure of the local population was assessed in two areas of the Almadén mercury mining district, Spain, which has been the world's largest producer of this element. Two groups, who are exposed to different sources of mercury, from a point source in Almadén and a diffuse source hundreds of kilometres away in the same region, were studied. Total mercury (THg) in human hair ranged from 0.20 to 9.35 mg kg(-1) and the mean value was 2.64 mg kg(-1). About 87% of subjects had THg levels in excess of the EPA reference dose (RfD=1.0 mg kg(-1)), while a high percentage (68%) of them live in Almadén. There was a clear increase in hair Hg with reported fish consumption and the highest mean hair mercury level was 4 times the RfD in a group who had reported the highest consumption of fish. For the whole group, there was a significant effect of age, gender and fish consumption in relation to Hg concentration in the hair. Nevertheless, when both groups were tested separately by means of a multivariate regression model, there was significant exposure in those living near the mine area. Several factors such as age, gender and fish consumption remained statistically significant and were associated with THg. The main conclusion is that people living close to the hot spot are more impacted by mercury than people living further away. The intake of Hg through consumption of fish is an important parameter for Hg exposure; however, in the case of people living close to the hot spot, their levels are related to the highly Hg-impacted living environment.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/metabolismo , Cabelo/metabolismo , Mercúrio/metabolismo , Mineração , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Dieta/estatística & dados numéricos , Exposição Ambiental/análise , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Espanha , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...