Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120638, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518496

RESUMO

Microorganisms drive the degradation of organic matter thanks to their enzymatic versatility. However, the structure of lignocellulose poses a great challenge for the microbiota inhabiting a compost pile. Our purpose was to increase the biodegradability of vegetable waste in the early stages of the composting process by applying a microbial consortium with lignocelllulolytic capacity. For this, a previous screening was performed among the culturable microbiota from different composting processes to find inoculants with ligninocellulolytic activity. Selected strains were applied as a pure culture and as a microbial consortium. The starting material was composed of tomato plant and pruning remains mixed in a ratio (50:50 v/v), whose humidity was adjusted to around 65%. To determine the ability of both treatments to activate the biodegradation of the mixtures, moisture, organic matter, ash, C/N ratio, 4-day cumulative respirometric index (AT4) and degradation rates of cellulose, hemicellulose and lignin were evaluated. Subsequently, a real composting process was developed in which the performance of the microbial consortium was compared with the composting process without inoculum (control). According to our tests, three microbial strains (Bacillus safensis, Bacillus licheniformis and Fusarium oxysporum) were selected. The results showed that the application of the bacteria strains at low doses (104 CFU g-1 on the complete residual material of the pile) resulted in higher rates of lignocelullose degradation after 10 days of treatment compared to that observed after application of the fungus in pure culture or untreated controls. The implementation of the strategy described in this work resulted in obtaining compost with better agronomic quality than the uninoculated controls. Therefore, the application of this consortium could be considered as an interesting tool for bioactivation of lignocellulosic waste prior to the composting process.


Assuntos
Compostagem , Lignina , Lignina/metabolismo , Celulose , Bactérias/metabolismo , Solo
2.
Waste Manag ; 171: 143-154, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37659121

RESUMO

The search for new sustainable alternatives for plant disease control has gained interest in the last decades. Compost extracts are nowadays considered a remarkable alternative to agrochemicals due to their biopesticidal properties. However, these properties could be affected by the different variables of extraction protocols and by starting compost. This work focused on the physicochemical and biological characterization of compost extracts obtained from a wide range of composted materials and different extraction protocols (CEP). CEP-1 and CEP-4 involved incubation at 20 °C for 48 h and 14 days, respectively; CEP-2 incubation for 24 h at 40 °C; while CEP-3 were incubated for 12 h at 70 °C. Electrical conductivity, pH, total organic carbon (TOC) and phenolic content were determined as well as the actinobacterial count and enzyme profiles related to plant pathogen suppression. Additionally, the influence of the different materials and protocols on the in vitro growth inhibition of Alternaria alternata and Botrytis cinerea was determined. The starting materials and extraction protocols significantly influenced the physicochemical and biological characteristics of extracts. Treatments based on long incubation times at 20 °C, as well as those based on short incubation times at 40 °C, resulted in extracts with increased suppressive properties. However, extracts derived from CEP-3 protocol were characterized by high phenolic and TOC content, low functional biodiversity, and a more discreet antagonistic capacity. Therefore, the development and optimization of suitable extraction protocols could lead to compost extracts with increased phytoprotective capacities, thus becoming an effective and sustainable alternative to chemical inputs.

3.
Sci Total Environ ; 873: 162288, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801343

RESUMO

The abuse of chemical fertilizers in recent decades has led the promotion of less harmful alternatives, such as compost or aqueous extracts obtained from it. Therefore, it is essential to develop liquid biofertilizers, which in addition of being stable and useful for fertigation and foliar application in intensive agriculture had a remarkable phytostimulant extracts. For this purpose, a collection of aqueous extracts was obtained by applying four different Compost Extraction Protocols (CEP1, CEP2, CEP3, CEP4) in terms of incubation time, temperature and agitation of compost samples from agri-food waste, olive mill waste, sewage sludge and vegetable waste. Subsequently, a physicochemical characterization of the obtained set was performed in which pH, electrical conductivity and Total Organic Carbon (TOC) were measured. In addition, a biological characterization was also carried out by calculating the Germination Index (GI) and determining the Biological Oxygen Demand (BOD5). Furthermore, functional diversity was studied using the Biolog EcoPlates technique. The results obtained confirmed the great heterogeneity of the selected raw materials. However, it was observed that the less aggressive treatments in terms of temperature and incubation time, such as CEP1 (48 h, room temperature (RT)) or CEP4 (14 days, RT), provided aqueous compost extracts with better phytostimulant characteristics than the starting composts. It was even possible to find a compost extraction protocol that maximize the beneficial effects of compost. This was the case of CEP1, which improved the GI and reduced the phytotoxicity in most of the raw materials analyzed. Therefore, the use of this type of liquid organic amendment could mitigate the phytotoxic effect of several composts being a good alternative to the use of chemical fertilizers.

4.
J Environ Manage ; 319: 115647, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803069

RESUMO

Olive mill wastewater (OMW) resulting from the olive oil extraction process is usually disposed of in evaporation ponds where it concentrates generating a sludge that pollutes the ponds nearby area. In this study, four bio-treatments were applied for the in-situ bioremediation and valorization of OMW sludge: Landfarming, phytoremediation, composting and vermicomposting. In all cases, the OMW sludge was added with organic residues (mushroom compost, rabbit manure, and chicken manure). The bio-treatments were carried out in duplicate, inoculated and non-inoculated, to determine the effect of a specialized fungal consortium (Aspergillus ochraceus H2 and Scedosporium apiospermum H16) on the efficacy of the bio-treatments. The evaluation of chemical parameters, toxicity, and functional microbial biodiversity revealed that the four techniques depleted the toxicity and favored the stimulation of functional microbiota. Landfarming and phytoremediation allowed the decontamination and improvement of soils. Composting and vermicomposting also offered high-quality products of agronomic interest. Inoculation improved the bioremediation effectiveness. Biological treatments are effective for the safe recovery of contaminated OMW sludge into high-quality services and products.


Assuntos
Olea , Esgotos , Animais , Resíduos Industriais/análise , Esterco , Olea/química , Azeite de Oliva , Lagoas , Coelhos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
5.
Sci Rep ; 12(1): 13150, 2022 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-35909166

RESUMO

The use of rhizobacteria provide great benefits in terms of nitrogen supply, suppression of plant diseases, or production of vitamins and phytohormones that stimulate the plant growth. At the same time, cyanobacteria can photosynthesize, fix nitrogen, synthesize substances that stimulate rhizogenesis, plant aerial growth, or even suppose an extra supply of carbon usable by heterotrophic bacteria, as well as act as biological control agents, give them an enormous value as plant growth promoters. The present study focused on the in vitro establishment of consortia using heterotrophic bacteria and cyanobacteria and the determination of their effectiveness in the development of tomato seedlings. Microbial collection was composed of 3 cyanobacteria (SAB-M612 and SAB-B866 belonging to Nostocaceae Family) and GS (unidentified cyanobacterium) and two phosphate and potassium solubilizing heterotrophic bacteria (Pseudomonas putida-BIO175 and Pantoea cypripedii-BIO175). The results revealed the influence of the culture medium, incubation time and the microbial components of each consortium in determining their success as biofertilizers. In this work, the most compatible consortia were obtained by combining the SAB-B866 and GS cyanobacteria with either of the two heterotrophic bacteria. Cyanobacteria GS promoted the growth of both rhizobacteria in vitro (increasing logarithmic units when they grew together). While Cyanobacteria SAB-B866 together with both rhizobacteria stimulated the growth of tomato seedlings in planta, leading to greater aerial development of the treated seedlings. Parameters such as fresh weight and stem diameter stood out in the plants treated with the consortia (SAB-B866 and both bacteria) compared to the untreated plants, where the values doubled. However, the increase was more discrete for the parameters stem length and number of leaves. These results suggest that the artificial formulation of microbial consortia can have positive synergistic effects on plant growth, which is of enormous agro-biotechnological interest.


Assuntos
Cianobactérias , Solanum lycopersicum , Consórcios Microbianos , Nitrogênio , Raízes de Plantas , Plântula
6.
J Hazard Mater ; 402: 123481, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736177

RESUMO

During the last two decades, the method most widely used to manage olive mill wastewater (OMW) derived from olive oil production has been its disposal in evaporation ponds. Long-term storage of OMW leads to the accumulation of toxic sediments (OMWS) rich in recalcitrant compounds with phytotoxic and antimicrobial properties, which limit their use for agronomic purpose. The aim of this study was to compare the effect of two in situ bioremediation strategies (composting and a combination of composting followed by vermicomposting) to remove the potential toxicity of the sediments derived from long-term stored OMW. The results obtained showed that the composting method assisted with the earthworms enhanced the depletion of phenolic compounds and OMWS ecotoxicity more than composting, especially during the maturation stage. Moreover, vermicomposting was more effective in the reduction of the OMWS salinity. However, a pre-composting process to the OMWS is necessary prior to vermicomposting to provide the suitable conditions for earthworms survival and activity. Furthermore, the final compost showed a phytostimulating effect. Therefore, these in situ bioremediation strategies can be considered potential tools for decontamination and recovery of long-term stored OMWS in evaporation ponds, which currently poses an unsolved environmental problem.


Assuntos
Compostagem , Olea , Biodegradação Ambiental , Resíduos Industriais/análise , Azeite de Oliva , Lagoas , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA