Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(11): 5864-5882, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37207342

RESUMO

The compaction of mitochondrial DNA (mtDNA) is regulated by architectural HMG-box proteins whose limited cross-species similarity suggests diverse underlying mechanisms. Viability of Candida albicans, a human antibiotic-resistant mucosal pathogen, is compromised by altering mtDNA regulators. Among them, there is the mtDNA maintenance factor Gcf1p, which differs in sequence and structure from its human and Saccharomyces cerevisiae counterparts, TFAM and Abf2p. Our crystallographic, biophysical, biochemical and computational analysis showed that Gcf1p forms dynamic protein/DNA multimers by a combined action of an N-terminal unstructured tail and a long helix. Furthermore, an HMG-box domain canonically binds the minor groove and dramatically bends the DNA while, unprecedentedly, a second HMG-box binds the major groove without imposing distortions. This architectural protein thus uses its multiple domains to bridge co-aligned DNA segments without altering the DNA topology, revealing a new mechanism of mtDNA condensation.


Assuntos
Candida albicans , DNA Mitocondrial , Proteínas de Ligação a DNA , Proteínas Fúngicas , Humanos , Candida albicans/genética , Candida albicans/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/metabolismo
2.
EMBO J ; 42(3): e111913, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36533296

RESUMO

Condensin, an SMC (structural maintenance of chromosomes) protein complex, extrudes DNA loops using an ATP-dependent mechanism that remains to be elucidated. Here, we show how condensin activity alters the topology of the interacting DNA. High condensin concentrations restrain positive DNA supercoils. However, in experimental conditions of DNA loop extrusion, condensin restrains negative supercoils. Namely, following ATP-mediated loading onto DNA, each condensin complex constrains a DNA linking number difference (∆Lk) of -0.4. This ∆Lk increases to -0.8 during ATP binding and resets to -0.4 upon ATP hydrolysis. These changes in DNA topology do not involve DNA unwinding, do not spread outside the condensin-DNA complex and can occur in the absence of the condensin subunit Ycg1. These findings indicate that during ATP binding, a short DNA domain delimited by condensin is pinched into a negatively supercoiled loop. We propose that this loop is the feeding segment of DNA that is subsequently merged to enlarge an extruding loop. Such a "pinch and merge" mechanism implies that two DNA-binding sites produce the feeding loop, while a third site, plausibly involving Ycg1, might anchor the extruding loop.


Assuntos
Cromossomos , DNA Super-Helicoidal , DNA/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
Bioessays ; 44(1): e2100187, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761394

RESUMO

The DNA-passage activity of topoisomerase II accidentally produces DNA knots and interlinks within and between chromatin fibers. Fortunately, these unwanted DNA entanglements are actively removed by some mechanism. Here we present an outline on DNA knot formation and discuss recent studies that have investigated how intracellular DNA knots are removed. First, although topoisomerase II is able to minimize DNA entanglements in vitro to below equilibrium values, it is unclear whether such capacity performs equally in vivo in chromatinized DNA. Second, DNA supercoiling could bias topoisomerase II to untangle the DNA. However, experimental evidence indicates that transcriptional supercoiling of intracellular DNA boosts knot formation. Last, cohesin and condensin could tighten DNA entanglements via DNA loop extrusion (LE) and force their dissolution by topoisomerase II. Recent observations indicate that condensin activity promotes the removal of DNA knots during interphase and mitosis. This activity might facilitate the spatial organization and dynamics of chromatin.


Assuntos
Adenosina Trifosfatases , Complexos Multiproteicos , Proteínas de Ciclo Celular , Cromatina , DNA , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética
4.
EMBO J ; 40(1): e105393, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33155682

RESUMO

The juxtaposition of intracellular DNA segments, together with the DNA-passage activity of topoisomerase II, leads to the formation of DNA knots and interlinks, which jeopardize chromatin structure and gene expression. Recent studies in budding yeast have shown that some mechanism minimizes the knotting probability of intracellular DNA. Here, we tested whether this is achieved via the intrinsic capacity of topoisomerase II for simplifying the equilibrium topology of DNA; or whether it is mediated by SMC (structural maintenance of chromosomes) protein complexes like condensin or cohesin, whose capacity to extrude DNA loops could enforce dissolution of DNA knots by topoisomerase II. We show that the low knotting probability of DNA does not depend on the simplification capacity of topoisomerase II nor on the activities of cohesin or Smc5/6 complexes. However, inactivation of condensin increases the occurrence of DNA knots throughout the cell cycle. These results suggest an in vivo role for the DNA loop extrusion activity of condensin and may explain why condensin disruption produces a variety of alterations in interphase chromatin, in addition to persistent sister chromatid interlinks in mitotic chromatin.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Complexos Multiproteicos/metabolismo , Ciclo Celular/fisiologia , Cromátides/metabolismo , Cromatina/metabolismo , Saccharomyces cerevisiae/metabolismo , Coesinas
5.
Nucleic Acids Res ; 47(13): 6946-6955, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31165864

RESUMO

Recent studies have revealed that the DNA cross-inversion mechanism of topoisomerase II (topo II) not only removes DNA supercoils and DNA replication intertwines, but also produces small amounts of DNA knots within the clusters of nucleosomes that conform to eukaryotic chromatin. Here, we examine how transcriptional supercoiling of intracellular DNA affects the occurrence of these knots. We show that although (-) supercoiling does not change the basal DNA knotting probability, (+) supercoiling of DNA generated in front of the transcribing complexes increases DNA knot formation over 25-fold. The increase of topo II-mediated DNA knotting occurs both upon accumulation of (+) supercoiling in topoisomerase-deficient cells and during normal transcriptional supercoiling of DNA in TOP1 TOP2 cells. We also show that the high knotting probability (Pkn ≥ 0.5) of (+) supercoiled DNA reflects a 5-fold volume compaction of the nucleosomal fibers in vivo. Our findings indicate that topo II-mediated DNA knotting could be inherent to transcriptional supercoiling of DNA and other chromatin condensation processes and establish, therefore, a new crucial role of topoisomerase II in resetting the knotting-unknotting homeostasis of DNA during chromatin dynamics.


Assuntos
DNA Topoisomerases Tipo II/fisiologia , DNA Super-Helicoidal/metabolismo , Conformação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/fisiologia , Transcrição Gênica/genética , Cromatina/ultraestrutura , DNA Topoisomerases Tipo I/metabolismo , DNA Fúngico/metabolismo , Humanos , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 47(5): e29, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30649468

RESUMO

The characterization of knots formed in duplex DNA has proved useful to infer biophysical properties and the spatial trajectory of DNA, both in free solution and across its macromolecular interactions. Since knotting, like supercoiling, makes DNA molecules more compact, DNA knot probability and knot complexity can be assessed by the electrophoretic velocity of nicked DNA circles. However, the chirality of the DNA knots has to be determined by visualizing the sign of their DNA crossings by means of electron microscopy. This procedure, which requires purifying the knotted DNA molecules and coating them with protein, is semi-quantitative and it is impracticable in biological samples that contain little amount of knotted DNA forms. Here, we took advantage of an earlier observation that the two chiral forms of a trefoil knot acquire slightly different electrophoretic velocity when the DNA is supercoiled. We introduced a second gel dimension to reveal these chiral forms in DNA mixtures that are largely unknotted. The result is a high-resolution 2D-gel electrophoresis procedure that quantitatively discerns the fractions of positive- and negative-noded trefoil knots formed in vitro and in vivo systems. This development in DNA knot analysis may uncover valuable information toward disclosing the architecture of DNA ensembles.


Assuntos
DNA/química , Eletroforese em Gel Bidimensional , Conformação de Ácido Nucleico , DNA Super-Helicoidal/química , Reprodutibilidade dos Testes
7.
Nat Commun ; 9(1): 3989, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266901

RESUMO

The interplay between chromatin structure and DNA topology is a fundamental, yet elusive, regulator of genome activities. A paradigmatic case is the "linking number paradox" of nucleosomal DNA, which refers to the incongruence between the near two left-handed superhelical turns of DNA around the histone octamer and the DNA linking number difference (∆Lk) stabilized by individual nucleosomes, which has been experimentally estimated to be about -1.0. Here, we analyze the DNA topology of a library of mononucleosomes inserted into small circular minichromosomes to determine the average ∆Lk restrained by individual nucleosomes in vivo. Our results indicate that most nucleosomes stabilize about -1.26 units of ∆Lk. This value balances the twist (∆Tw ≈ + 0.2) and writhe (∆Wr ≈ -1.5) deformations of nucleosomal DNA in terms of the equation ∆Lk = ∆Tw + ∆Wr. Our finding reconciles the existing discrepancy between theoretical and observed measurement of the ΔLk constrained by nucleosomes.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA Fúngico/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Cromossomos Fúngicos/genética , DNA Circular/genética , DNA Circular/metabolismo , DNA Fúngico/genética , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Methods Mol Biol ; 1805: 291-300, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971724

RESUMO

Most bacterial cells have a motor enzyme termed DNA gyrase, which is a type-2 topoisomerase that reduces the linking number (Lk) of DNA. The supercoiling energy generated by gyrase is essential to maintain the bacterial chromosome architecture and regulate its DNA transactions. This chapter describes the use of agarose-gel electrophoresis to detect the unconstrained supercoiling of DNA generated by gyrase or other gyrase-like activities. Particular emphasis is made on the preparation of a relaxed plasmid as initial DNA substrate, on the distinction of constrained and unconstrained DNA supercoils, and on the measurement of the DNA supercoiling density achieved by gyrase activity.


Assuntos
DNA Girase/metabolismo , DNA Super-Helicoidal/metabolismo , Eletroforese em Gel de Ágar/métodos , Animais , Bovinos , Humanos , Especificidade por Substrato
9.
Nucleic Acids Res ; 46(2): 650-660, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29149297

RESUMO

In vivo DNA molecules are narrowly folded within chromatin fibers and self-interacting chromatin domains. Therefore, intra-molecular DNA entanglements (knots) might occur via DNA strand passage activity of topoisomerase II. Here, we assessed the presence of such DNA knots in a variety of yeast circular minichromosomes. We found that small steady state fractions of DNA knots are common in intracellular chromatin. These knots occur irrespective of DNA replication and cell proliferation, though their abundance is reduced during DNA transcription. We found also that in vivo DNA knotting probability does not scale proportionately with chromatin length: it reaches a value of ∼0.025 in domains of ∼20 nucleosomes but tends to level off in longer chromatin fibers. These figures suggest that, while high flexibility of nucleosomal fibers and clustering of nearby nucleosomes facilitate DNA knotting locally, some mechanism minimizes the scaling of DNA knot formation throughout intracellular chromatin. We postulate that regulation of topoisomerase II activity and the fractal architecture of chromatin might be crucial to prevent a potentially massive and harmful self-entanglement of DNA molecules in vivo.


Assuntos
Cromatina/química , DNA Fúngico/química , DNA Super-Helicoidal/química , Conformação de Ácido Nucleico , Divisão Celular/genética , Cromatina/genética , Cromatina/metabolismo , Replicação do DNA/genética , DNA Topoisomerases Tipo II/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , Modelos Moleculares , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Ann Hum Biol ; 44(7): 581-592, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28948844

RESUMO

CONTEXT: Over the last few decades, advances in sequencing have improved greatly. One of the most important achievements of Next Generation Sequencing (NGS) is to produce millions of sequence reads in a short period of time, and to produce large sequences of DNA in fragments of any size. Libraries can be generated from whole genomes or any DNA or RNA region of interest without the need to know its sequence beforehand. This allows for looking for variations and facilitating genetic identification. OBJECTIVES: A deep analysis of current NGS technologies and their application, especially in forensics, including a discussion about the pros and cons of these technologies in genetic identification. METHODS: A systematic literature search in PubMed, Science Direct and Scopus electronic databases was performed for the period of December 2012 to June 2015. RESULTS: In the forensic field, one of the main problems is the limited amount of sample available, as well as its degraded state. If the amount of DNA input required for preparing NGS libraries continues to decrease, nearly any sample could be sequenced; therefore, the maximum information from any biological remains could be obtained. Additionally, microbiome typification could be an interesting application to study for crime scene characterisation. CONCLUSIONS: NGS technologies are going to be crucial for DNA human typing in cases like mass disasters or other events where forensic specimens and samples are compromised and degraded. With the use of NGS it will be possible to achieve the simultaneous analysis of the standard autosomal DNA (STRs and SNPs), mitochondrial DNA, and X and Y chromosomal markers.


Assuntos
Genética Forense/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Genética Forense/instrumentação , Humanos
11.
Cell Rep ; 13(4): 667-677, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26489472

RESUMO

DNA is wrapped in a left-handed fashion around histone octasomes containing the centromeric histone H3 variant CENP-A. However, DNA topology studies have suggested that DNA is wrapped in a right-handed manner around the CENP-A nucleosome that occupies the yeast point centromere. Here, we determine the DNA linking number difference (ΔLk) stabilized by the yeast centromere and the contribution of the centromere determining elements (CDEI, CDEII, and CDEIII). We show that the intrinsic architecture of the yeast centromere stabilizes +0.6 units of ΔLk. This topology depends on the integrity of CDEII and CDEIII, but it is independent of cbf1 binding to CDEI and of the variable length of CDEII. These findings suggest that the interaction of the CBF3 complex with CDEIII and a distal CDEII segment configures a right-handed DNA loop that excludes CDEI. This loop is then occupied by a CENP-A histone complex, which does not have to be inherently right-handed.


Assuntos
Centrômero/metabolismo , Saccharomyces cerevisiae/genética , DNA Fúngico/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
EMBO J ; 33(13): 1492-501, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24859967

RESUMO

Eukaryotic topoisomerases I (topo I) and II (topo II) relax the positive (+) and negative (-) DNA torsional stress (TS) generated ahead and behind the transcription machinery. It is unknown how this DNA relaxation activity is regulated and whether (+) and (-)TS are reduced at similar rates. Here, we used yeast circular minichromosomes to conduct the first comparative analysis of topo I and topo II activities in relaxing chromatin under (+) and (-)TS. We observed that, while topo I relaxed (+) and (-)TS with similar efficiency, topo II was more proficient and relaxed (+)TS more quickly than (-)TS. Accordingly, we found that the relaxation rate of (+)TS by endogenous topoisomerases largely surpassed that of (-)TS. We propose a model of how distinct conformations of chromatin under (+) and (-)TS may produce this unbalanced relaxation of DNA. We postulate that, while quick relaxation of (+)TS may facilitate the progression of RNA and DNA polymerases, slow relaxation of (-)TS may serve to favor DNA unwinding and other structural transitions at specific regions often required for genomic transactions.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , DNA Fúngico/metabolismo , DNA Super-Helicoidal/metabolismo , Saccharomyces cerevisiae/enzimologia , Cromatina , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Fúngico/genética , DNA Super-Helicoidal/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
13.
Nucleic Acids Res ; 42(3): 1821-30, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24185700

RESUMO

By transporting one DNA double helix (T-segment) through a double-strand break in another (G-segment), topoisomerase II reduces fractions of DNA catenanes, knots and supercoils to below equilibrium values. How DNA segments are selected to simplify the equilibrium DNA topology is enigmatic, and the biological relevance of this activity is unclear. Here we examined the transit of the T-segment across the three gates of topoisomerase II (entry N-gate, DNA-gate and exit C-gate). Our experimental results uncovered that DNA transport probability is determined not only during the capture of a T-segment at the N-gate. When a captured T-segment has crossed the DNA-gate, it can backtrack to the N-gate instead of exiting by the C-gate. When such backtracking is precluded by locking the N-gate or by removing the C-gate, topoisomerase II no longer simplifies equilibrium DNA topology. Therefore, we conclude that the C-gate enables a post-DNA passage proofreading mechanism, which challenges the release of passed T-segments to either complete or cancel DNA transport. This proofreading activity not only clarifies how type-IIA topoisomerases simplify the equilibrium topology of DNA in free solution, but it may explain also why these enzymes are able to solve the topological constraints of intracellular DNA without randomly entangling adjacent chromosomal regions.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , DNA/química , DNA Super-Helicoidal/metabolismo , Conformação de Ácido Nucleico
14.
Ann Rheum Dis ; 71(7): 1219-26, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22696686

RESUMO

OBJECTIVES: To perform fine mapping of the autoimmunity susceptibility gene BLK and identify functional variants involved in systemic lupus erythematosus (SLE). METHODS: Genotyping of 1163 European SLE patients and 1482 controls and imputation were performed covering the BLK gene with 158 single-nucleotide polymorphisms. Logistic regression analysis was done using PLINK and conditional analyses using GENABEL's test score. Transfections of BLK constructs on HEK293 cells containing the novel mutation or the wild type form were analysed for their effect on protein half-life using a protein stability assay, cycloheximide and western blot. CHiP-qPCR for detection of nuclear factor κ B (NFkB) binding. RESULTS: Fine mapping of BLK identified two independent genetic effects with functional consequences: one represented by two tightly linked associated haplotype blocks significantly enriched for NFκB-binding sites and numerous putative regulatory variants whose risk alleles correlated with low BLK mRNA levels. Binding of NFkBp50 and p65 to an associated 1.2 Kb haplotype segment was confirmed. A second independent genetic effect was represented by an Ala71Thr, low-frequency missense substitution with an OR=2.31 (95% CI 1.38 to 3.86). The 71Thr decreased BLK protein half-life. CONCLUSIONS: These results show that rare and common regulatory variants in BLK are involved in disease susceptibility and both, albeit independently, lead to reduced levels of BLK protein.


Assuntos
Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Mutação , Polimorfismo de Nucleotídeo Único , Quinases da Família src/genética , Biomarcadores/metabolismo , Mapeamento Cromossômico , Regulação Enzimológica da Expressão Gênica , Marcadores Genéticos/genética , Genótipo , Células HEK293 , Meia-Vida , Humanos , NF-kappa B/metabolismo , Ligação Proteica , Estabilidade Proteica , Transfecção , Quinases da Família src/metabolismo
15.
Nucleic Acids Res ; 37(16): 5498-510, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19578061

RESUMO

It has been proposed that the hepatitis C virus (HCV) internal ribosome entry site (IRES) resides within a locked conformation, owing to annealing of its immediate flanking sequences. In this study, structure probing using Escherichia coli dsRNA-specific RNase III and other classical tools showed that this region switches to an open conformation triggered by the liver-specific microRNA, miR-122. This structural transition, observed in vitro, may be the mechanistic basis for the involvement of downstream IRES structural domain VI in translation, as well as providing a role of liver-specific miR-122 in HCV infection. In addition, the induced RNA switching at the 5' untranslated region could ultimately represent a new mechanism of action of micro-RNAs.


Assuntos
Regiões 5' não Traduzidas , Hepacivirus/genética , MicroRNAs/química , RNA Viral/química , Sequência de Bases , Eletroforese em Gel de Poliacrilamida , Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Cinética , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , RNA Viral/metabolismo , Ribonuclease III/metabolismo , Ribonuclease T1/metabolismo , Análise de Sequência de RNA
16.
J Virol ; 82(11): 5167-77, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18353962

RESUMO

In plants, small RNA-guided processes referred to as RNA silencing control gene expression and serve as an efficient antiviral mechanism. Plant viruses are inducers and targets of RNA silencing as infection involves the production of functional virus-derived small interfering RNAs (siRNAs). Here we investigate the structural and genetic components influencing the formation of Tobacco rattle virus (TRV)-derived siRNAs. TRV siRNAs are mostly 21 nucleotides in length and derive from positive and negative viral RNA strands, although TRV siRNAs of positive polarity are significantly more abundant. This asymmetry appears not to correlate with the presence of highly structured regions of single-stranded viral RNA. The Dicer-like enzyme DCL4, DCL3, or DCL2 targets, alone or in combination, viral templates to promote synthesis of siRNAs of both polarities from all regions of the viral genome. The heterogeneous distribution profile of TRV siRNAs reveals differential contributions throughout the TRV genome to siRNA formation. Indirect evidence suggests that DCL2 is responsible for production of a subset of siRNAs derived from the 3' end region of TRV. TRV siRNA biogenesis and antiviral silencing are strongly dependent on the combined activity of the host-encoded RNA-dependent RNA polymerases RDR1, RDR2, and RDR6, thus providing evidence that perfectly complementary double-stranded RNA serves as a substrate for siRNA production. We conclude that the overall composition of viral siRNAs in TRV-infected plants reflects the combined action of several interconnected pathways involving different DCL and RDR activities.


Assuntos
Nicotiana/virologia , Vírus de RNA/genética , Vírus de RNA/metabolismo , RNA Interferente Pequeno/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Genoma Viral/genética , Mutação/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
17.
Virol J ; 5: 42, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18353170

RESUMO

Hairpin RNAs have been used to confer resistance to viruses in plants through RNA silencing. However, it has not been demonstrated that RNA silencing was effective against inoculation by aphids of non-persistently transmitted viruses, the major route of plant virus spread in nature. As a proof-of-principle strategy, we made use of Agrobacterium tumefaciens to transiently express a hairpin RNA homologous to Potato virus Y (PVY) in plant tissues. A complete and specific interference with aphid transmission of PVY was achieved by inducers of RNA silencing, as demonstrated by specific siRNAs accumulation in agroinfiltrated tissues. To our knowledge, this is the first report of successful interference with non-persistent transmission of a plant virus using RNA interference.


Assuntos
Afídeos/virologia , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/patogenicidade , Interferência de RNA , RNA Viral/genética , Agrobacterium tumefaciens/genética , Animais , Pareamento de Bases , Clonagem Molecular , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/virologia , RNA de Cadeia Dupla/genética , RNA Viral/química , Nicotiana/microbiologia , Nicotiana/virologia
18.
J Gen Virol ; 87(Pt 11): 3413-3423, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17030878

RESUMO

Potyviruses are non-persistently transmitted by aphid vectors with the assistance of a viral accessory factor known as helper component (HC-Pro), a multifunctional protein that is also involved in many other essential processes during the virus infection cycle. A transient Agrobacterium-mediated expression system was used to produce Plum pox virus (PPV) HC-Pro in Nicotiana benthamiana leaves from constructs that incorporated the 5' region of the genome, yielding high levels of HC-Pro in agroinfiltrated leaves. The expressed PPV HC-Pro was able to assist aphid transmission of purified virus particles in a sequential feeding assay, and to complement transmission-defective variants of the virus. Also, HC-Pro of a second potyvirus, Tobacco etch virus (TEV), was expressed and found to be functional for aphid transmission. These results show that this transient system can be useful for production of functionally active HC-Pro in potyviruses, and the possible uses of this approach to study the mechanism of transmission are discussed.


Assuntos
Afídeos/virologia , Cisteína Endopeptidases/biossíntese , Insetos Vetores/virologia , Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/patogenicidade , Engenharia de Proteínas/métodos , Proteínas Virais/biossíntese , Animais , Cisteína Endopeptidases/fisiologia , Folhas de Planta/metabolismo , Vírus Eruptivo da Ameixa/química , Potyvirus/química , Potyvirus/patogenicidade , Proteínas Recombinantes/biossíntese , Rhizobium/metabolismo , Nicotiana/metabolismo , Proteínas Virais/fisiologia , Virulência
19.
Phytopathology ; 95(8): 894-901, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18944411

RESUMO

ABSTRACT The effects on symptom expression of single amino acid mutations in the central region of the Plum pox virus (PPV) helper component-proteinase (HC-Pro) gene were analyzed in Nicotiana benthamiana using Potato virus X (PVX) recombinant viruses. PVX recombinant virus expressing the wild-type variant of PPV HC-Pro induced the expected enhancement of PVX pathogenicity, manifested as necrosis and plant death. Recombinant virus expressing a variant of PPV HC-Pro containing a single point mutation ( HCL(134)H) was unable to induce this synergistic phenotype. The RNA silencing suppressor activity of PPV HC-Pro was demonstrated in a transient silencing suppression assay. In contrast, the HCL(134)H mutant showed no such activity. These results indicate that a unique point mutation in PPV HC-Pro impaired its ability to suppress RNA silencing and abolished its capacity to induce synergism, and clearly shows for the first time the link between these two functions in potyvirus HC-Pro. Additionally, we compared the effects on virus accumulation in N. benthamiana plants infected with either the PVX recombinant constructs or with native viruses in double infection experiments. PVX (+) and (-) strand genomic RNA accumulated at similar levels in plants infected with PVX recombinants, leading to an increase in PVX pathology, compared with plants infected with PVX alone. This finding confirms that the enhancement of pathogenicity associated with synergistic interaction is not a consequence of more efficient PVX replication due to RNA silencing suppression by PPV HC-Pro.

20.
J Gen Virol ; 85(Pt 1): 241-249, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14718639

RESUMO

Tobacco etch potyvirus (TEV) is transmitted by aphids in a non-persistent manner with the assistance of a virus-encoded protein known as helper component (HC-Pro). To produce a biologically active form of recombinant TEV HC-Pro protein, heterologous expression in the methylotrophic yeast Pichia pastoris was used. A cDNA encoding the TEV HC-Pro region, fused to a Saccharomyces cerevisiae alpha-mating factor secretory peptide coding region, was inserted into the P. pastoris genome using a modified version of the pPIC9 vector. The expressed TEV HC-Pro protein was obtained directly from culture medium of recombinant yeast colonies; it was able to interact with TEV particles in a protein overlay binding assay, and also to assist aphid transmission of purified TEV particles to plants using the aphid Myzus persicae as vector. Our results indicate that P. pastoris provides a rapid and low-cost heterologous expression system that can be used to obtain biologically active potyvirus HC-Pro protein for in vitro transmission assays.


Assuntos
Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Nicotiana/virologia , Pichia/metabolismo , Potyvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Afídeos/fisiologia , Sequência de Bases , Cisteína Endopeptidases/química , Vetores Genéticos , Dados de Sequência Molecular , Pichia/genética , Potyvirus/genética , Proteínas Recombinantes/metabolismo , Proteínas Virais/química , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...