Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 206: 437-447, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30172871

RESUMO

Flavonoids are recognized to regulate animals' food digestion processes trough interaction with digestive enzymes. The binding capacity of hesperetin (HES), luteolin (LUT), quercetin (QUE), catechin (CAT) and rutin (RUT) with pancreatic α-amylase were evaluated, using UV-Vis spectroscopy, fluorescence and molecular docking. Using p-nitrophenyl-α-d-maltopentoside (pNPG5) as substrate analog, LUT showed the best inhibitory capacity, even better than that of the positive control, acarbose (ACA). A mixed-type inhibition was observed for HES, LUT and QUE, a competitive-type for ACA, while no inhibition was observed with CAT and RUT. In agreement with kinetic results, α-amylase presented a higher affinity for LUT, when analyzed by fluorescence quenching. The binding of flavonoids to amylase followed a static mechanism, where the binding of one flavonoid per enzyme molecule was observed. Docking analysis showed that flavonoids bound near to enzyme active site, while ACA bound in another site behind the catalytic triad. Extrinsic fluorescence analysis, together with docking analysis pointed out that hydrophobic interactions regulated the flavonoid-α-amylase interactions. The present study provides evidence to understand the relationship of flavonoids structure with their inhibition mechanism.


Assuntos
Flavonoides/química , Flavonoides/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , Sítios de Ligação , Flavonoides/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
2.
Sensors (Basel) ; 19(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577504

RESUMO

A method for measuring planar temperature fields of fluid flows is proposed. The focusing schlieren technique together with a calibration procedure to fulfill such a purpose is used. The focusing schlieren technique uses an off-axis circular illumination to reduce the depth of focus of the optical system. The calibration procedure is based on the relation of the intensity level of each pixel of a focused schlieren image to the corresponding cutoff grid position measured at the exit focal plane of the schlieren lens. The method is applied to measure planar temperature fields of the hot air issuing from a 10 mm diameter nozzle of a commercial Hot Air Gun Soldering Station Welding. Our tests are carried out at different temperature values and different planes along the radial position of the nozzle of the hot air. The experimental values of temperature measurements are in agree with those measured using a thermocouple.

3.
Appl Opt ; 52(22): 5562-9, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23913079

RESUMO

A convective fluid flow in air could be regulated if the physical process were better understood. Temperature and velocity measurements are required in order to obtain a proper characterization of a convective fluid flow. In this study, we show that a classical schlieren system can be used for simultaneous measurements of temperature and velocity in a convective fluid flow in air. The schlieren technique allows measurement of the average fluid temperature and velocity integrated in the direction of the test beam. Therefore, in our experiments we considered surfaces with isothermal conditions. Temperature measurements are made by relating the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the schlieren system. The same schlieren images were also used to measure the velocity of the fluid flow by using optical flow techniques. The algorithm implemented analyzes motion between consecutive schlieren frames to obtain a tracked sequence and finally velocity fields. The proposed technique was applied to measure the temperature and velocity fields in natural convection of air due to unconfined and confined heated rectangular plates.

5.
Monografías Clínicas en Ortodoncia;31(1): 54-71,
em Espanhol | URUGUAIODONTO | ID: odn-23415
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA