Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Psychophysiology ; 61(11): e14643, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38970156

RESUMO

Social comparison is central in human life and can be especially challenging in depression and social anxiety. We assessed event-related potentials and emotions using a social comparison task in which participants received feedback on both their own and a co-player's performance, in participants with depression and/or social anxiety (n = 63) and healthy controls (n = 72). Participants reported more negative emotions for downward (being better than the co-player [participant correct, co-player wrong]) and upward (being worse than the co-player [participant wrong, co-player correct]) comparisons versus even outcomes, with these effects being stronger in depression and social anxiety. At the Medial Frontal Negativity, both controls and depressed participants showed a more negative amplitude for upward comparison versus both the participant and co-player performing wrong. Socially anxious subjects showed the opposite effect, possibly due to greater expectations about being worse than others. The P300 decreased for downward and upward comparisons compared to even outcomes, which may relate to the higher levels of conflict of social inequality. Depressed and socially anxious subjects showed a blunted P300 increase over time in response to the task outcomes, suggesting deficits in allocating resources for the attention of incoming social information. The LPP showed increased amplitude for downward and upward comparison versus the even outcomes and no group effect. Emotional findings suggest that social comparisons are more difficult for depressed and socially anxious individuals. Event-related potentials findings may shed light on the neural substrates of these difficulties.


Assuntos
Depressão , Eletroencefalografia , Potenciais Evocados , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Potenciais Evocados/fisiologia , Depressão/fisiopatologia , Comparação Social , Ansiedade/fisiopatologia , Potenciais Evocados P300/fisiologia , Emoções/fisiologia , Adolescente
2.
Front Neurosci ; 18: 1237245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680452

RESUMO

We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.

3.
Sci Rep ; 13(1): 11466, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454235

RESUMO

Identifying the functional networks underpinning indirectly observed processes poses an inverse problem for neurosciences or other fields. A solution of such inverse problems estimates as a first step the activity emerging within functional networks from EEG or MEG data. These EEG or MEG estimates are a direct reflection of functional brain network activity with a temporal resolution that no other in vivo neuroimage may provide. A second step estimating functional connectivity from such activity pseudodata unveil the oscillatory brain networks that strongly correlate with all cognition and behavior. Simulations of such MEG or EEG inverse problem also reveal estimation errors of the functional connectivity determined by any of the state-of-the-art inverse solutions. We disclose a significant cause of estimation errors originating from misspecification of the functional network model incorporated into either inverse solution steps. We introduce the Bayesian identification of a Hidden Gaussian Graphical Spectral (HIGGS) model specifying such oscillatory brain networks model. In human EEG alpha rhythm simulations, the estimation errors measured as ROC performance do not surpass 2% in our HIGGS inverse solution and reach 20% in state-of-the-art methods. Macaque simultaneous EEG/ECoG recordings provide experimental confirmation for our results with 1/3 times larger congruence according to Riemannian distances than state-of-the-art methods.


Assuntos
Mapeamento Encefálico , Encéfalo , Animais , Humanos , Teorema de Bayes , Mapeamento Encefálico/métodos , Eletrocorticografia , Ritmo alfa , Macaca , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Modelos Neurológicos
4.
Psychophysiology ; 60(9): e14319, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37118970

RESUMO

Depression and social anxiety are common disorders that have a profound impact on social functioning. The need for studying the neural substrates of social interactions in mental disorders using interactive tasks has been emphasized. The field of neuroeconomics, which combines neuroscience techniques and behavioral economics multiplayer tasks such as the Ultimatum Game (UG), can contribute in this direction. We assessed emotions, behavior, and Event-Related Potentials in participants with depression and/or social anxiety symptoms (MD/SA, n = 63, 57 females) and healthy controls (n = 72, 67 females), while they played the UG. In this task, participants received fair, mid-value, and unfair offers from other players. Mixed linear models were implemented to assess trial level changes in neural activity. The MD/SA group reported higher levels of sadness in response to mid-value and unfair offers compared to controls. In controls, the Medial Frontal Negativity associated with fair offers increased over time, while this dynamic was not observed in the MD/SA group. The MD/SA group showed a decreased P3/LPP in all offers, compared to controls. These results indicate an enhanced negative emotional response to unfairness in the MD/SA group. Neural results reveal a blunted response over time to positive social stimuli in the MD/SA group. Moreover, between-group differences in P3/LPP may relate to a reduced saliency of offers and/or to a reduced availability of resources for processing incoming stimuli in the MD/SA group. Findings may shed light into the neural substrates of social difficulties in these disorders.


Assuntos
Depressão , Potenciais Evocados , Feminino , Humanos , Depressão/psicologia , Potenciais Evocados/fisiologia , Emoções , Medo , Ansiedade/psicologia , Jogos Experimentais , Tomada de Decisões/fisiologia , Comportamento Social
5.
Front Neurosci ; 17: 978527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008210

RESUMO

Oscillatory processes at all spatial scales and on all frequencies underpin brain function. Electrophysiological Source Imaging (ESI) is the data-driven brain imaging modality that provides the inverse solutions to the source processes of the EEG, MEG, or ECoG data. This study aimed to carry out an ESI of the source cross-spectrum while controlling common distortions of the estimates. As with all ESI-related problems under realistic settings, the main obstacle we faced is a severely ill-conditioned and high-dimensional inverse problem. Therefore, we opted for Bayesian inverse solutions that posited a priori probabilities on the source process. Indeed, rigorously specifying both the likelihoods and a priori probabilities of the problem leads to the proper Bayesian inverse problem of cross-spectral matrices. These inverse solutions are our formal definition for cross-spectral ESI (cESI), which requires a priori of the source cross-spectrum to counter the severe ill-condition and high-dimensionality of matrices. However, inverse solutions for this problem were NP-hard to tackle or approximated within iterations with bad-conditioned matrices in the standard ESI setup. We introduce cESI with a joint a priori probability upon the source cross-spectrum to avoid these problems. cESI inverse solutions are low-dimensional ones for the set of random vector instances and not random matrices. We achieved cESI inverse solutions through the variational approximations via our Spectral Structured Sparse Bayesian Learning (ssSBL) algorithm https://github.com/CCC-members/Spectral-Structured-Sparse-Bayesian-Learning. We compared low-density EEG (10-20 system) ssSBL inverse solutions with reference cESIs for two experiments: (a) high-density MEG that were used to simulate EEG and (b) high-density macaque ECoG that were recorded simultaneously with EEG. The ssSBL resulted in two orders of magnitude with less distortion than the state-of-the-art ESI methods. Our cESI toolbox, including the ssSBL method, is available at https://github.com/CCC-members/BC-VARETA_Toolbox.

6.
Child Neuropsychol ; 29(7): 1088-1108, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36718095

RESUMO

Patients with congenital heart disease (CHD) requiring cardiac surgery in infancy are at high risk for neurodevelopmental impairments. Neonatal imaging studies have reported disruptions of brain functional organization before surgery. Yet, the extent to which functional network alterations are present after cardiac repair remains unexplored. This preliminary study aimed at investigating cortical functional connectivity in 4-month-old infants with repaired CHD, using resting-state functional near-infrared spectroscopy (fNIRS). After fNIRS signal frequency decomposition, we compared values of magnitude-squared coherence as a measure of connectivity strength, between 21 infants with corrected CHD and 31 healthy controls. We identified a subset of connections with differences between groups at an uncorrected statistical level of p < .05 while controlling for sex and maternal socioeconomic status, with most of these connections showing reduced connectivity in infants with CHD. Although none of these differences reach statistical significance after FDR correction, likely due to the small sample size, moderate to large effect sizes were found for group-differences. If replicated, these results would therefore suggest preliminary evidence that alterations of brain functional connectivity are present in the months after cardiac surgery. Additional studies involving larger sample size are needed to replicate our data, and comparisons between pre- and postoperative findings would allow to further delineate alterations of functional brain connectivity in this population.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Cardiopatias Congênitas , Recém-Nascido , Lactente , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Mapeamento Encefálico/métodos , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia
7.
Appl Sci (Basel) ; 13(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38435340

RESUMO

The neurocomputational model 'Directions into Velocities of Articulators' (DIVA) was developed to account for various aspects of normal and disordered speech production and acquisition. The neural substrates of DIVA were established through functional magnetic resonance imaging (fMRI), providing physiological validation of the model. This study introduces DIVA_EEG an extension of DIVA that utilizes electroencephalography (EEG) to leverage the high temporal resolution and broad availability of EEG over fMRI. For the development of DIVA_EEG, EEG-like signals were derived from original equations describing the activity of the different DIVA maps. Synthetic EEG associated with the utterance of syllables was generated when both unperturbed and perturbed auditory feedback (first formant perturbations) were simulated. The cortical activation maps derived from synthetic EEG closely resembled those of the original DIVA model. To validate DIVA_EEG, the EEG of individuals with typical voices (N = 30) was acquired during an altered auditory feedback paradigm. The resulting empirical brain activity maps significantly overlapped with those predicted by DIVA_EEG. In conjunction with other recent model extensions, DIVA_EEG lays the foundations for constructing a complete neurocomputational framework to tackle vocal and speech disorders, which can guide model-driven personalized interventions.

8.
Neurophotonics ; 9(4): 045004, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36405999

RESUMO

Significance: Current techniques for data analysis in functional near-infrared spectroscopy (fNIRS), such as artifact correction, do not allow to integrate the information originating from both wavelengths, considering only temporal and spatial dimensions of the signal's structure. Parallel factor analysis (PARAFAC) has previously been validated as a multidimensional decomposition technique in other neuroimaging fields. Aim: We aimed to introduce and validate the use of PARAFAC for the analysis of fNIRS data, which is inherently multidimensional (time, space, and wavelength). Approach: We used data acquired in 17 healthy adults during a verbal fluency task to compare the efficacy of PARAFAC for motion artifact correction to traditional two-dimensional decomposition techniques, i.e., target principal (tPCA) and independent component analysis (ICA). Correction performance was further evaluated under controlled conditions with simulated artifacts and hemodynamic response functions. Results: PARAFAC achieved significantly higher improvement in data quality as compared to tPCA and ICA. Correction in several simulated signals further validated its use and promoted it as a robust method independent of the artifact's characteristics. Conclusions: This study describes the first implementation of PARAFAC in fNIRS and provides validation for its use to correct artifacts. PARAFAC is a promising data-driven alternative for multidimensional data analyses in fNIRS and this study paves the way for further applications.

10.
J Neurosci Methods ; 370: 109487, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35090901

RESUMO

BACKGROUND: Functional near-infrared spectroscopy (fNIRS) is a suitable tool for recording brain function in pediatric or challenging populations. As with other neuroimaging techniques, the scientific community is engaged in an evolving debate regarding the most adequate methods for performing fNIRS data analyses. NEW METHOD: We introduce LIONirs, a neuroinformatics toolbox for fNIRS data analysis, designed to follow two main goals: (1) flexibility, to explore several methods in parallel and verify results using 3D visualization; (2) simplicity, to apply a defined processing pipeline to a large dataset of subjects by using the MATLAB Batch System and available on GitHub. RESULTS: Within the graphical user interfaces (DisplayGUI), the user can reject noisy intervals and correct artifacts, while visualizing the topographical projection of the data onto the 3D head representation. Data decomposition methods are available for the identification of relevant signatures, such as brain responses or artifacts. Multimodal data recorded simultaneously to fNIRS, such as physiology, electroencephalography or audio-video, can be visualized using the DisplayGUI. The toolbox includes several functions that allow one to read, preprocess, and analyze fNIRS data, including task-based and functional connectivity measures. COMPARISON WITH EXISTING METHODS: Several good neuroinformatics tools for fNIRS data analysis are currently available. None of them emphasize multimodal visualization of the data throughout the preprocessing steps and multidimensional decomposition, which are essential for understanding challenging data. Furthermore, LIONirs provides compatibility and complementarity with other existing tools by supporting common data format. CONCLUSIONS: LIONirs offers a flexible platform for basic and advanced fNIRS data analysis, shown through real experimental examples.


Assuntos
Análise de Dados , Espectroscopia de Luz Próxima ao Infravermelho , Artefatos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Criança , Eletroencefalografia , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA