Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(45): e202312645, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37723118

RESUMO

CO2 hydrogenation to methanol has the potential to serve as a sustainable route to a wide variety of hydrocarbons, fuels and plastics in the quest for net zero. Synergistic Pd/In2 O3 (Palldium on Indium Oxide) catalysts show high CO2 conversion and methanol selectivity, enhancing methanol yield. The identity of the optimal active site for this reaction is unclear, either as a Pd-In alloy, proximate metals, or distinct sites. In this work, we demonstrate that metal-efficient Pd/In2 O3 species dispersed on Al2 O3 can match the performance of pure Pd/In2 O3 systems. Further, we follow the evolution of both Pd and In sites, and surface species, under operando reaction conditions using X-ray Absorption Spectroscpy (XAS) and infrared (IR) spectroscopy. In doing so, we can determine both the nature of the active sites and the influence on the catalytic mechanism.

2.
Nanoscale ; 15(29): 12319-12332, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37434462

RESUMO

The pursuit of new catalysts for the aqueous transformation of biomass-derived compounds under mild conditions is an active area of research. In the present work, the selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-bishydroxymethylfuran (BHMF) was efficiently accomplished in water at 25 °C and 5 bar H2 pressure (after 1 h full conversion and 100% selectivity). For this, a novel nanocatalyst based on graphene-supported Pt NPs decorated with Sn-butyl fragments (-SnBun) has been used. More specifically, Pt NPs supported on reduced graphene oxide (rGO) were functionalized with different equivalents (0.2, 0.5, 0.8 and 1 equiv.) of tributyltin hydride (Bu3SnH) following a surface organometallic chemistry (SOMC) approach. The synthesized catalysts (Pt@rGO/Snx) were fully characterized by state-of-the-art techniques, confirming the presence of Sn-butyl fragments grafted on the platinum surface. The higher the amount of surface -SnBun, the higher the activity of the catalyst, reaching a maximum conversion with Pt@rGO/Sn0.8. Indeed, the latter has proven to be one of the most active catalysts reported to date for the aqueous hydrogenation of HMF to BHMF (estimated TOF = 666.7 h-1). Furthermore, Pt@rGO/Sn0.8 has been demonstrated to be an efficient catalyst for the reduction of other biomass-derived compounds in water, such as furfural, vanillin or levoglucosenone. Here, the catalytic activity is remarkably boosted by Sn-butyl fragments located on the platinum surface, giving a catalyst several times faster than non-functionalized Pt@rGO.

3.
Chem Sci ; 13(44): 13046-13059, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425494

RESUMO

The search for new ligands capable of modifying the metal nanoparticle (MNP) catalytic behavior is of increasing interest. Herein we present the first example of RuNPs stabilized with non-planar heptagon-containing saddle-shaped nanographenes (Ru@1 and Ru@2). The resemblance to graphene-supported MNPs makes these non-planar nanographene-stabilized RuNPs very attractive systems to further investigate graphene-metal interactions. A combined theoretical/experimental study allowed us to explore the coordination modes and dynamics of these nanographenes at the Ru surface. The curvature of these saddle-shaped nanographenes makes them efficient MNP stabilizers. The resulting RuNPs were found to be highly active catalysts for the hydrogenation of aromatics, including platform molecules derived from biomass (i.e. HMF) or liquid organic hydrogen carriers (i.e. N-indole). A significant ligand effect was observed since a minor modification on the hept-HBC structure (C[double bond, length as m-dash]CH2 instead of C[double bond, length as m-dash]O) was reflected in a substantial increase in the MNP activity. Finally, the stability of these canopied RuNPs was investigated by multiple addition experiments, proving to be stable catalysts for at least 96 h.

4.
ACS Catal ; 12(14): 8462-8475, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37528952

RESUMO

The development of energetically efficient processes for the aqueous reduction of biomass-derived compounds into chemicals is key for the optimal transformation of biomass. Herein we report an early example of the reduction of biomass-derived oxygenated compounds in water by magnetically induced catalysis. Non-coated and carbon-coated core-shell FeCo@Ni magnetic nanoparticles were used as the heating agent and the catalyst simultaneously. In this way it was possible to control the product distribution by adjusting the field amplitude applied during the magnetic catalysis, opening a precedent for this type of catalysis. Finally, the encapsulation of the magnetic nanoparticles in carbon (FeCo@Ni@C) strongly improved the stability of the magnetic catalyst in solution, making its reuse possible up to at least eight times in dioxane and four times in water.

5.
Nanoscale ; 13(14): 6902-6915, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33885491

RESUMO

Formation of stable carbides during CO bond dissociation on small ruthenium nanoparticles (RuNPs) is demonstrated, both by means of DFT calculations and by solid state 13C NMR techniques. Theoretical calculations of chemical shifts in several model clusters are employed in order to secure experimental spectroscopic assignations for surface ruthenium carbides. Mechanistic DFT investigations, carried out on a realistic Ru55 nanoparticle model (∼1 nm) in terms of size, structure and surface composition, reveal that ruthenium carbides are obtained during CO hydrogenation. Calculations also indicate that carbide formation via hydrogen-assisted hydroxymethylidyne (COH) pathways is exothermic and occurs at reasonable kinetic cost on standard sites of the RuNPs, such as 4-fold ones on flat terraces, and not only in steps as previously suggested. Another novel outcome of the DFT mechanistic study consists of the possible formation of µ6 ruthenium carbides in the tip-B5 site, similar examples being known only for molecular ruthenium clusters. Moreover, based on DFT energies, the possible rearrangement of the surface metal atoms around the same tip-site results in a µ-Ru atom coordinated to the remaining RuNP moiety, reminiscent of a pseudo-octahedral metal center on the NP surface.

6.
ACS Appl Nano Mater ; 3(7): 7076-7087, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32743352

RESUMO

Magnetically induced catalysis using magnetic nanoparticles (MagNPs) as heating agents is a new efficient method to perform reactions at high temperatures. However, the main limitation is the lack of stability of the catalysts operating in such harsh conditions. Normally, above 500 °C, significant sintering of MagNPs takes place. Here we present encapsulated magnetic FeCo and Co NPs in carbon (Co@C and FeCo@C) as an ultrastable heating material suitable for high-temperature magnetic catalysis. Indeed, FeCo@C or a mixture of FeCo@C:Co@C (2:1) decorated with Ni or Pt-Sn showed good stability in terms of temperature and catalytic performances. In addition, consistent conversions and selectivities regarding conventional heating were observed for CO2 methanation (Sabatier reaction), propane dehydrogenation (PDH), and propane dry reforming (PDR). Thus, the encapsulation of MagNPs in carbon constitutes a major advance in the development of stable catalysts for high-temperature magnetically induced catalysis.

7.
Nanoscale ; 11(35): 16544-16552, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31455954

RESUMO

Bimetallic ruthenium-platinum nanoparticles (RuPt NPs) of different surface distributions and stabilized by using a sulfonated N-heterocyclic carbene ligand (1-(2,6-diisopropylphenyl)-3-(3-potassium sulfonatopropyl)-imidazol-2-ylidene) were prepared from Ru(COD)(COT) (COD = cyclooctadiene and COT = cyclooctatriene), and platinum precursors having various decomposition rates (Pt(NBE)3, NBE = norbornene, Pt(CH3)2(COD) and Pt2(DBA)3, DBA = dibenzylideneacetone). Structural and surface studies by FT-IR and solid-state MAS NMR, using carbon monoxide as a probe molecule, revealed the presence of different structures and surface compositions for different nanoparticles of similar sizes, which principally depend on the decomposition rate of the organometallic precursors used during the synthesis. Specifically, the slower the decomposition rate of the platinum precursor, the higher the number of Pt atoms at the NP surface. The different bimetallic RuPt NPs, as well as their monometallic equivalents (Pt and Ru NPs), were used in isotopic H/D exchange through C-H activation on l-lysine. Interestingly, the activity and selectivity of the direct C-H deuteration were dependent on the NP surface composition at the α position but not on that at the ε position. Chemical shift perturbation (CSP) experiments revealed that the difference in reactivity at the α position is due to a Pt-carboxylate interaction, which hinders the H/D exchange.

8.
Dalton Trans ; 48(4): 1351-1366, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30608093

RESUMO

Monomeric alkoxo complexes of the type [(iPrPCP)M-OR] (M = Ni or Pd; R = Me, Et, CH2CH2OH; iPrPCP = 2,6-bis(diisopropylphosphino)phenyl) react rapidly with CO2 to afford the corresponding alkylcarbonates [(iPrPCP)M-OCOOR]. We have investigated the reactions of these compounds as models for key steps of catalytic synthesis of organic carbonates from alcohols and CO2. The MOCO-OR linkage is kinetically labile, and readily exchanges the OR group with water or other alcohols (R'OH), to afford equilibrium mixtures containing ROH and [(iPrPCP)M-OCOOH] (bicarbonate) or [(iPrPCP)M-OCOOR'], respectively. However, [(iPrPCP)M-OCOOR] complexes are thermally stable and remain indefinitely stable in solution when these are kept in sealed vessels. The constants for the exchange equilibria have been interpreted, showing that CO2 insertion into M-O bonds is thermodynamically more favorable for M-OR than for M-OH. Alkylcarbonate complexes [(iPrPCP)M-OCOOR] fail to undergo nucleophilic attack by ROH to yield organic carbonates ROCOOR, either intermolecularly (using neat ROH solvent) or in intramolecular fashion (e.g., [(iPrPCP)M-OCOOCH2CH2OH]). In contrast, [(iPrPCP)M-OCOOMe] complexes react with a variety of electrophilic methylating reagents (MeX) to afford dimethylcarbonate and [(iPrPCP)M-X]. The reaction rates increase in the order X = OTs < IMe ≪ OTf and Ni < Pd. These findings suggest that a suitable catalyst design should combine basic and electrophilic alcohol activation sites in order to perform alkyl carbonate syntheses via direct alcohol carboxylation.

9.
Chem Commun (Camb) ; 54(51): 7070-7073, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29876568

RESUMO

Herein we present ruthenium nanoparticles (Ru-NPs) stabilized with two rigid NHC ligands derived from cholesterol. The obtained nanoparticles were fully characterized and applied in the hydrogenation of various aromatic compounds under mild conditions. Interestingly, the more bulky ligand gives a slightly lower ligand coverage and a faster catalyst.

10.
Acc Chem Res ; 51(2): 376-384, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29308876

RESUMO

Although there has been for the past 20 years great interest in the synthesis and use of metal nanoparticles, little attention has been paid to the complexity of the surface of these species. In particular, the different aspects concerning the ligands present, their location, their mode of binding, and their dynamics have been little studied. Our group has started in the early 1990s an investigation of the surface coordination chemistry of ruthenium and platinum nanoparticles but at that time with a lack of adequate techniques to fulfill our ambition. Over 10 years later, we went back to this problem and could obtain a more precise vision of the surface species. This Account is centered on ruthenium chemistry. This metal has been the most studied in our group, first thanks to the availability of a precursor, Ru(cyclooctadiene)(cyclooctatriene) (Ru(COD)(COT)), which possesses the ability to decompose in very mild conditions without leaving residues on the resulting nanoparticles and second because of the absence of magnetic perturbations (Knight shift, paramagnetism, ferromagnetism, etc.), which has allowed the use of solution and solid state NMR. In this respect, it has been possible to evidence the presence of a high concentration of hydrides on the surface of these particles, to study their dynamics, and to show that since the polarity of the Ru-H bond is similar to that of the C-H bond, a Ru/H NP would behave as a big lipophilic entity. The second point was to characterize the coordination of ancillary ligands. This has been achieved for different ligands, in particular phosphines and carbenes, which made possible the study of the modification of NP reactivity induced by surface ligands. This led to the conclusion that the presence of surface ligands can benefit both the activity of NP catalysts and their selectivity. If it was expected that the selectivity could be modulated, the promoting effect from the presence of ligands on, for example, arene or CO hydrogenation was totally unexpected. Playing with poison atoms (Sn, Fe, etc.) or ligands (CO) may allow us to play with the reactivity of the NPs to make them more selective for selected reactions. Finally, the search for specific ligands for nanoparticles is still in its infancy, but some examples have been found as have specific reactions of nanoparticles. Obviously arene hydrogenation and CO hydrogenation were well-known in heterogeneous catalysis, but we could demonstrate that they can be carried out in very mild conditions on ligand stabilized RuNPs. On the other hand, the enantiospecific C-H activation leading to enantioselective labeling of large organic or biomolecules or the C-C bond cleavage in mild conditions were both unexpected. There is still much work to perform for reaching the degree of control on nanoparticles that is presently achieved in organometallic molecular chemistry, but this work shows that it is possible.

11.
Inorg Chem ; 56(21): 13086-13099, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28985067

RESUMO

A series of nickel pincer complexes with terminal alkoxo ligands [(iPrPCP)Ni-OR] (R = Et, nBu, iPr, CH2CH2OH; iPrPCP is the 2,6-bis(diisopropylphosphinomethyl)phenyl pincer ligand) was synthesized and fully characterized. Together with the previously reported methoxo analogues of Ni and Pd, these complexes constitute a unique series of isostructural late transition-metal alkoxides. Spectroscopic and X-ray diffraction data provide direct indications of the strong polarization of their covalent Ni-OR bonds. One of the most salient features of this class of compounds is their facile hydrolysis with traces of moisture, leading to equilibrium mixtures with the corresponding hydroxides [(iPrPCP)M-OH] (M = Ni or Pd) and alcohols, ROH. To compare the hydrolytic stability of nickel and palladium alkoxides, we performed NMR titrations of both hydroxides with several alcohols and determined the corresponding equilibrium constants. In general, these constants are ca. 1 order of magnitude smaller for M = Ni than Pd, indicating that Ni alkoxide complexes are more readily hydrolyzed than their Pd counterparts. For alkoxide complexes containing heteroatom-free R groups, the tendency to hydrolyze decreases as the parent alcohol ROH becomes more acidic, that is, R = Me > Et > iPr. This intuitive trend is broken for 2-methoxyethanol, the most acidic alcohol investigated. The hydroxo/2-methoxyethanol exchange equilibrium constants are comparable to those of ethanol (M = Ni) or methanol (M = Pd), showing that the corresponding 2-methoxyethoxide complexes are more prone to hydrolysis than anticipated. These experimental observations were rationalized in the light of density functional theory calculations.

12.
Phys Chem Chem Phys ; 19(32): 21655-21662, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28766603

RESUMO

The synthesis of iridium nanoparticles (IrNPs) ligated by various secondary phosphine oxides (SPOs) is described. This highly reproducible and simple method via H2 reduction produces well dispersed, small nanoparticles (NPs), which were characterized by the state-of-the-art techniques, such as TEM, HRTEM, WAXS and ATR FT-IR spectroscopy. In particular, multinuclear solid state MAS-NMR spectroscopy with and without cross polarization (CP) enabled us to investigate the different binding modes adopted by the ligand at the nanoparticle surface, suggesting the presence of three possible types of coordination: as a purely anionic ligand Ir-P(O)R2, as a neutral acid R2P-O-H and as a monoanionic bidentate H-bonded dimer R2P-O-HO[double bond, length as m-dash]PR2. Specifically, the higher basicity of the dicyclohexyl system leads to the formation of IrNPs in which the bidentate binding mode is most abundant. Such cyclohexyl groups are bent towards the edges, as is suggested by the study of 13CO coordination on the NP surface. This study also showed that the number of surface sites on faces available for bridging CO molecules is higher than the number of sites for terminal CO species on edges and apices, which is unexpected taking into account the small size of the nanoparticles. In addition, the IrNPs present a high chemoselectivity in the hydrogenation of cinnamaldehyde to the unsaturated alcohol.

13.
Chemistry ; 23(52): 12779-12786, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28612457

RESUMO

Soluble platinum nanoparticles (Pt NPs) ligated by two different long-chain N-heterocyclic carbenes (LC-IPr and LC-IMe) were synthesized and fully characterized by TEM, high-resolution TEM, wide-angle X-ray scattering (WAXS), X-ray photoelectron spectroscopy (XPS), and solution NMR. The surface chemistry of these NPs (Pt@LC-IPr and Pt@LC-IMe) was investigated by FT-IR and solid state NMR using CO as a probe molecule. A clear influence of the bulkiness of the N-substituents on the size, surface state, and catalytic activity of these Pt NPs was observed. While Pt@LC-IMe showed no activity in the hydroboration of phenylacetylene, Pt@LC-IPr revealed good selectivity for the trans-isomer, which may be supported by a homogeneous species. This is the first example of hydroboration of acetylenes catalyzed by non-supported Pt NPs.

14.
Chem Commun (Camb) ; 53(43): 5850-5853, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28504805

RESUMO

Thanks to new water-soluble Ru nanoparticles (NPs) stabilized by sulfonated NHC ligands, we demonstrate that it is possible to monitor the catalyst/substrate interaction using NMR chemical shift perturbations (CSPs), under conditions that closely resemble those applied during the enantiospecific C-H deuteration of l-lysine. Correlating the pH dependence of the interaction of l-lysine with the surface of the RuNPs and its subsequent deuteration, our study underscores the importance of oriented binding to the surface as a critical factor for H/D exchange.

15.
Chemistry ; 23(6): 1444-1450, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-27873441

RESUMO

A specific secondary phosphine oxide (SPO) ligand (tert-butyl(phenyl)phosphine oxide) was employed to generate two iridium catalysts, an Ir-SPO complex and IrNPs (iridium nanoparticles) ligated with SPO ligands, which were compared mutually and with several supported iridium catalysts with the aim to establish the differences in their catalytic properties. The Ir-SPO-based catalysts showed totally different activities and selectivities in the hydrogenation of various substituted aldehydes, in which H2 is likely cleaved by a metal-ligand cooperation, that is, the SPO ligand and a neighboring metal centre operate in tandem to activate the hydrogen molecule. In addition, the supported IrNPs behave very differently from both Ir-SPO catalysts. This study exemplifies perfectly the advantages and disadvantages related to the use of the main types of catalysts, and thus the dissimilarities between them.

16.
Nanoscale ; 8(21): 10974-92, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27172520

RESUMO

A deeper understanding of the relationship between experimental reaction conditions and the surface composition of nanoparticles is crucial in order to elucidate mechanisms involved in nanocatalysis. In the framework of the Fischer-Tropsch synthesis, a resolution of this complex puzzle requires a detailed understanding of the interaction of CO and H with the surface of the catalyst. In this context, the single- and co-adsorption of CO and H to the surface of a 1 nm ruthenium nanoparticle has been investigated with density functional theory. Using several indexes (d-band center, crystal overlap Hamilton population, density of states), a systematic analysis of the bond properties and of the electronic states has also been done, in order to bring an understanding of structure/property relationships at the nanoscale. The H : CO surface composition of this ruthenium nanoparticle exposed to syngas has been evaluated according to a thermodynamic model fed with DFT energies. Such ab initio thermodynamic calculations give access to the optimal H : CO coverage values under a wide range of experimental conditions, through the construction of free energy phase diagrams. Surprisingly, under the Fischer-Tropsch synthesis experimental conditions, and in agreement with new experiments, only CO species are adsorbed at the surface of the nanoparticle. These findings shed new light on the possible reaction pathways underlying the Fischer-Tropsch synthesis, and specifically the initiation of the reaction. It is finally shown that the joint knowledge of the surface composition and energy descriptors can help to identify possible reaction intermediates.

17.
Chemistry ; 21(27): 9833-49, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26017282

RESUMO

Nickel and palladium methoxides [((iPr)PCP)M-OMe], which contain the (iPr)PCP pincer ligand, decompose upon heating to give products of different kinds. The palladium derivative cleanly gives the dimeric Pd(0) complex [Pd(µ-(iPr)PCHP)]2 ((iPr)PCHP = 2,6-bis(diisopropylphosphinomethyl)phenyl) and formaldehyde. In contrast, decomposition of [((iPr)PCP)Ni-OMe] affords polynuclear carbonyl phosphine complexes. Both decomposition processes are initiated by ß-hydrogen elimination (BHE), but the resulting [((iPr)PCP)M-H] hydrides undergo divergent reaction sequences that ultimately lead to the irreversible breakdown of the pincer units. Whereas the Pd hydride spontaneously experiences reductive C-H coupling, the decay of its Ni analogue is brought about by its reaction with formaldehyde released in the BHE step. Kinetic measurements showed that the BHE reaction is reversible and less favourable for Ni than for Pd for both kinetic and thermodynamic reasons. DFT calculations confirmed the main conclusions of the kinetic studies and provided further insight into the mechanisms of the decomposition reactions.

18.
Chem Commun (Camb) ; 46(46): 8851-3, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20967320

RESUMO

Well-defined dimeric or polymeric Pd(0) complexes [Pd(µ-(iPr)PCHP)](n) (n = 2 or ∞) containing the bridging ligand α,α'-bis(diisopropylphosphino)-m-xylene ((iPr)PCHP) are produced under mild conditions when the cyclometallated PCP pincer complex ((iPr)PCP)Pd-OH reacts with methanol or isopropanol.


Assuntos
Compostos Organometálicos/síntese química , Paládio/química , 2-Propanol/química , Cristalografia por Raios X , Ligantes , Metanol/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...