Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Curr Neuropharmacol ; 22(2): 323-338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37475559

RESUMO

The development of new antipsychotics with pro-cognitive properties and less side effects represents a priority in schizophrenia drug research. In this study, we present for the first time a preclinical exploration of the effects of the promising natural atypical antipsychotic Methyl-2-Amino-3- Methoxybenzoate (MAM), a brain-penetrable protoalkaloid from the seed of the plant Nigella damascena. Using animal models related to hyperdopaminergic activity, namely the pharmacogenetic apomorphine (D2/D1 receptor agonist)-susceptible (APO-SUS) rat model and pharmacologically induced mouse and rat models of schizophrenia, we found that MAM reduced gnawing stereotypy and climbing behaviours induced by dopaminergic agents. This predicts antipsychotic activity. In line, MAM antagonized apomorphine-induced c-Fos and NPAS4 mRNA levels in post-mortem brain nucleus accumbens and dorsolateral striatum of APO-SUS rats. Furthermore, phencyclidine (PCP, an NMDA receptor antagonist) and 2,5-Dimethoxy-4-iodoamphetamine (DOI, a 5HT2A/2C receptor agonist) induced prepulse inhibition deficits, reflecting the positive symptoms of schizophrenia, which were rescued by treatment with MAM and atypical antipsychotics alike. Post-mortem brain immunostaining revealed that MAM blocked the strong activation of both PCP- and DOI-induced c-Fos immunoreactivity in a number of cortical areas. Finally, during a 28-day subchronic treatment regime, MAM did not induce weight gain, hyperglycemia, hyperlipidemia or hepato- and nephrotoxic effects, side effects known to be induced by atypical antipsychotics. MAM also did not show any cataleptic effects. In conclusion, its brain penetrability, the apparent absence of preclinical side effects, and its ability to antagonize positive and cognitive symptoms associated with schizophrenia make MAM an exciting new antipsychotic drug that deserves clinical testing.


Assuntos
Antipsicóticos , Esquizofrenia , Ratos , Camundongos , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Apomorfina/farmacologia , Apomorfina/uso terapêutico , Éteres de Hidroxibenzoatos/uso terapêutico , Modelos Animais de Doenças , Cognição
2.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175387

RESUMO

Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world's population. Social-cognitive impairments in SZ prevent positive social interactions and lead to progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms remain poorly understood, which hinders the development of novel treatments. At the whole-brain level, an abnormal activation of social brain regions and interregional dysconnectivity within social-cognitive brain networks have been identified as major contributors to these symptoms. At the cellular and subcellular levels, an interplay between oxidative stress, neuroinflammation and N-methyl-D-aspartate receptor hypofunction is thought to underly SZ pathology. However, it is not clear how these molecular processes are linked with interregional dysconnectivity in the genesis of social-cognitive symptoms. Here, we aim to bridge the gap between macroscale (connectivity analyses) and microscale (molecular and cellular mechanistic) knowledge by proposing impaired myelination and the disinhibition of local microcircuits as possible causative biological pathways leading to dysconnectivity and abnormal activity of the social brain. Furthermore, we recommend electroencephalography as a promising translational technique that can foster pre-clinical drug development and discuss attractive drug targets for the treatment of social-cognitive symptoms in SZ.


Assuntos
Disfunção Cognitiva , Esquizofrenia , Humanos , Imageamento por Ressonância Magnética , Encéfalo/patologia , Eletroencefalografia
3.
Stem Cell Res Ther ; 14(1): 50, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959625

RESUMO

BACKGROUND: Three-dimensional (3D) human brain spheroids are instrumental to study central nervous system (CNS) development and (dys)function. Yet, in current brain spheroid models the limited variety of cell types hampers an integrated exploration of CNS (disease) mechanisms. METHODS: Here we report a 5-month culture protocol that reproducibly generates H9 embryonic stem cell-derived human cortical spheroids (hCSs) with a large cell-type variety. RESULTS: We established the presence of not only neuroectoderm-derived neural progenitor populations, mature excitatory and inhibitory neurons, astrocytes and oligodendrocyte (precursor) cells, but also mesoderm-derived microglia and endothelial cell populations in the hCSs via RNA-sequencing, qPCR, immunocytochemistry and transmission electron microscopy. Transcriptomic analysis revealed resemblance between the 5-months-old hCSs and dorsal frontal rather than inferior regions of human fetal brains of 19-26 weeks of gestational age. Pro-inflammatory stimulation of the generated hCSs induced a neuroinflammatory response, offering a proof-of-principle of the applicability of the spheroids. CONCLUSIONS: Our protocol provides a 3D human brain cell model containing a wide variety of innately developing neuroectoderm- as well as mesoderm-derived cell types, furnishing a versatile platform for comprehensive examination of intercellular CNS communication and neurological disease mechanisms.


Assuntos
Encéfalo , Neurônios , Humanos , Lactente , Encéfalo/metabolismo , Neurônios/metabolismo , Células Cultivadas , Esferoides Celulares , Astrócitos
4.
Biomedicines ; 10(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35625761

RESUMO

Crucial in the pathogenesis of neurodegenerative diseases is the process of neuroinflammation that is often linked to the pro-inflammatory cytokines Tumor necrosis factor alpha (TNFα) and Interleukin-1beta (IL-1ß). Human cortical spheroids (hCSs) constitute a valuable tool to study the molecular mechanisms underlying neurological diseases in a complex three-dimensional context. We recently designed a protocol to generate hCSs comprising all major brain cell types. Here we stimulate these hCSs for three time periods with TNFα and with IL-1ß. Transcriptomic analysis reveals that the main process induced in the TNFα- as well as in the IL-1ß-stimulated hCSs is neuroinflammation. Central in the neuroinflammatory response are endothelial cells, microglia and astrocytes, and dysregulated genes encoding cytokines, chemokines and their receptors, and downstream NFκB- and STAT-pathway components. Furthermore, we observe sets of neuroinflammation-related genes that are specifically modulated in the TNFα-stimulated and in the IL-1ß-stimulated hCSs. Together, our results help to molecularly understand human neuroinflammation and thus a key mechanism of neurodegeneration.

5.
Curr Top Behav Neurosci ; 59: 131-145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34432256

RESUMO

A major challenge in the field of the biogenic amine histamine is the search for new-generation histamine receptor specific drugs. Daniel Bovet and Sir James Black received their Nobel Prizes for Medicine for their work on histamine-1 receptor (H1R) and H2R antagonists to treat allergies and gastrointestinal disorders. The first H3R-targeting drug to reach the market was approved for the treatment of the neurological disorder narcolepsy in 2018. The antagonists for the most recently identified histamine receptor, H4R, are currently under clinical evaluation for their potential therapeutic effects on inflammatory diseases such as atopic dermatitis and pruritus. In this chapter, we propose that H4R antagonists are endowed with prominent anti-inflammatory and immune effects, including in the brain. To substantiate this proposition, we combine data from transcriptional analyses of postmortem human neurodegenerative disease brain samples, human genome-wide association studies (GWAS), and translational animal model studies. The results prompt us to suggest the potential involvement of the H4R in various neurodegenerative diseases and how manipulating the H4R may create new therapeutic opportunities in central nervous system diseases.


Assuntos
Histamina , Doenças Neurodegenerativas , Animais , Anti-Inflamatórios , Estudo de Associação Genômica Ampla , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Receptores Histamínicos/genética
6.
Front Bioeng Biotechnol ; 9: 679483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414171

RESUMO

Of the adeno-associated viruses (AAVs), AAV9 is known for its capability to cross the blood-brain barrier (BBB) and can, therefore, be used as a noninvasive method to target the central nervous system. Furthermore, the addition of the peptide PhP.B to AAV9 increases its transduction across the BBB by 40-fold. Another neurotropic serotype, AAV5, has been shown as a gene therapeutic delivery vehicle to ameliorate several neurodegenerative diseases in preclinical models, but its administration requires invasive surgery. In this study, AAV9-PhP.B and AAV5-PhP.B were designed and produced in an insect cell-based system. To AAV9, the PhP.B peptide TLAVPFK was added, whereas in AAV5-PhP.B (AQTLAVPFKAQAQ), with AQ-AQAQ sequences used to swap with the corresponding sequence of AAV5. The addition of PhP.B to AAV5 did not affect its capacity to cross the mouse BBB, while increased transduction of liver tissue was observed. Then, intravenous (IV) and intrastriatal (IStr) delivery of AAV9-PhP.B and AAV5 were compared. For AAV9-PhP.B, similar transduction and expression levels were achieved in the striatum and cortex, irrespective of the delivery method used. IStr administration of AAV5 resulted in significantly higher amounts of vector DNA and therapeutic miRNA in the target regions such as striatum and cortex when compared with an IV administration of AAV9-PhP.B. These results illustrate the challenge in developing a vector that can be delivered noninvasively while achieving a transduction level similar to that of direct administration of AAV5. Thus, for therapeutic miRNA delivery with high local expression requirements, intraparenchymal delivery of AAV5 is preferred, whereas a humanized AAV9-PhP.B may be useful when widespread brain (and peripheral) transduction is needed.

7.
Prog Neurobiol ; 202: 102069, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933532

RESUMO

During the process of neuronal outgrowth, developing neurons produce new projections, neurites, that are essential for brain wiring. Here, we discover a relatively late-evolved protein that we denote Ac45-related protein (Ac45RP) and that, surprisingly, drives neuronal outgrowth. Ac45RP is a paralog of the Ac45 protein that is a component of the vacuolar proton ATPase (V-ATPase), the main pH regulator in eukaryotic cells. Ac45RP mRNA expression is brain specific and coincides with the peak of neurogenesis and the onset of synaptogenesis. Furthermore, Ac45RP physically interacts with the V-ATPase V0-sector and colocalizes with V0 in unconventional, but not synaptic, secretory vesicles of extending neurites. Excess Ac45RP enhances the expression of V0-subunits, causes a more elaborate Golgi, and increases the number of cytoplasmic vesicular structures, plasma membrane formation and outgrowth of actin-containing neurites devoid of synaptic markers. CRISPR-cas9n-mediated Ac45RP knockdown reduces neurite outgrowth. We conclude that the novel vertebrate- and brain-specific Ac45RP is a V0-interacting constituent of unconventional vesicular structures that drives membrane expansion during neurite outgrowth and as such may furnish a tool for future neuroregenerative treatment strategies.


Assuntos
Crescimento Neuronal , ATPases Vacuolares Próton-Translocadoras , Animais , Encéfalo/metabolismo , Neuritos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vertebrados/metabolismo
9.
Brain Behav Immun ; 92: 127-138, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249171

RESUMO

Growing evidence indicates that microglia activation and a neuroinflammatory trigger contribute to dopaminergic cell loss in Parkinson's disease (PD). Furthermore, increased density of histaminergic fibers and enhanced histamine levels have been observed in the substantia nigra of PD-postmortem brains. Histamine-induced microglial activation is mediated by the histamine-4 receptor (H4R). In the current study, gene set enrichment and pathway analyses of a PD basal ganglia RNA-sequencing dataset revealed that upregulation of H4R was in the top functional category for PD treatment targets. Interestingly, the H4R antagonist JNJ7777120 normalized the number of nigrostriatal dopaminergic fibers and striatal dopamine levels in a rotenone-induced PD rat model. These improvements were accompanied by a reduction of α-synuclein-positive inclusions in the striatum. In addition, intracerebroventricular infusion of JNJ7777120 alleviated the morphological changes in Iba-1-positive microglia and resulted in a lower tumor necrosis factor-α release from this brain region, as well as in ameliorated apomorphine-induced rotation behaviour. Finally, JNJ7777120 also restored basal ganglia function by decreasing the levels of γ-aminobutyric acid (GABA) and the 5-hydroxyindoleactic acid to serotonin (5-HIAA/5-HT) concentration ratios in the striatum of the PD model. Our results highlight H4R inhibition in microglia as a promising and specific therapeutic target to reduce or prevent neuroinflammation, and as such the development of PD pathology.


Assuntos
Corpo Estriado , Doença de Parkinson , Receptores Histamínicos H4/antagonistas & inibidores , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo , Degeneração Neural/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Ratos , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
10.
Transl Psychiatry ; 10(1): 399, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184259

RESUMO

Schizophrenia (SZ) is a psychiatric disorder with a convoluted etiology that includes cognitive symptoms, which arise from among others a dysfunctional dorsolateral prefrontal cortex (dlPFC). In our search for the molecular underpinnings of the cognitive deficits in SZ, we here performed RNA sequencing of gray matter from the dlPFC of SZ patients and controls. We found that the differentially expressed RNAs were enriched for mRNAs involved in the Liver X Receptor/Retinoid X Receptor (LXR/RXR) lipid metabolism pathway. Components of the LXR/RXR pathway were upregulated in gray matter but not in white matter of SZ dlPFC. Intriguingly, an analysis for shared genetic etiology, using two SZ genome-wide association studies (GWASs) and GWAS data for 514 metabolites, revealed genetic overlap between SZ and acylcarnitines, VLDL lipids, and fatty acid metabolites, which are all linked to the LXR/RXR signaling pathway. Furthermore, analysis of structural T1-weighted magnetic resonance imaging in combination with cognitive behavioral data showed that the lipid content of dlPFC gray matter is lower in SZ patients than in controls and correlates with a tendency towards reduced accuracy in the dlPFC-dependent task-switching test. We conclude that aberrations in LXR/RXR-regulated lipid metabolism lead to a decreased lipid content in SZ dlPFC that correlates with reduced cognitive performance.


Assuntos
Esquizofrenia , Cognição , Estudo de Associação Genômica Ampla , Substância Cinzenta/diagnóstico por imagem , Humanos , Lipídeos , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Esquizofrenia/genética
11.
Cells ; 9(9)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858884

RESUMO

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons from the substantia nigra (SN) that project to the dorsal striatum (caudate-putamen). To better understand the molecular mechanisms underlying PD, we performed combined lipid profiling and RNA sequencing of SN and putamen samples from PD patients and age-matched controls. SN lipid analysis pointed to a neuroinflammatory component and included elevated levels of the endosomal lipid Bis (Monoacylglycero)Phosphate 42:8, while two of the three depleted putamen lipids were saturated sphingomyelin species. Remarkably, we observed gender-related differences in the SN and putamen lipid profiles. Transcriptome analysis revealed that the top-enriched pathways among the 354 differentially expressed genes (DEGs) in the SN were "protein folding" and "neurotransmitter transport", and among the 261 DEGs from putamen "synapse organization". Furthermore, we identified pathways, e.g., "glutamate signaling", and genes, encoding, e.g., an angiotensin receptor subtype or a proprotein convertase, that have not been previously linked to PD. The identification of 33 genes that were common among the SN and putamen DEGs, which included the α-synuclein paralog ß-synuclein, may contribute to the understanding of general PD mechanisms. Thus, our proof-of-concept data highlights new genes, pathways and lipids that have not been explored before in the context of PD.


Assuntos
Perfilação da Expressão Gênica/métodos , Lipídeos/sangue , Doença de Parkinson/fisiopatologia , Putamen/fisiopatologia , Substância Negra/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino
12.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545828

RESUMO

Multiple sclerosis (MS) is characterized by peripheral and central inflammatory features, as well as demyelination and neurodegeneration. The available Food and Drug Administration (FDA)-approved drugs for MS have been designed to suppress the peripheral immune system. In addition, however, the effects of these drugs may be partially attributed to their influence on glial cells and neurons of the central nervous system (CNS). We here describe the molecular effects of the traditional and more recent FDA-approved MS drugs Fingolimod, Dimethyl Fumarate, Glatiramer Acetate, Interferon-ß, Teriflunomide, Laquinimod, Natalizumab, Alemtuzumab and Ocrelizumab on microglia, astrocytes, neurons and oligodendrocytes. Furthermore, we point to a possible common molecular effect of these drugs, namely a key role for NFκB signaling, causing a switch from pro-inflammatory microglia and astrocytes to anti-inflammatory phenotypes of these CNS cell types that recently emerged as central players in MS pathogenesis. This notion argues for the need to further explore the molecular mechanisms underlying MS drug action.


Assuntos
Fatores Imunológicos/farmacologia , Esclerose Múltipla/tratamento farmacológico , Neuroglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aprovação de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fatores Imunológicos/uso terapêutico , Esclerose Múltipla/imunologia , NF-kappa B/metabolismo , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estados Unidos , United States Food and Drug Administration
13.
Nat Commun ; 11(1): 2329, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393757

RESUMO

Impaired cognitive functioning is a core feature of schizophrenia, and is hypothesized to be due to myelination as well as interneuron defects during adolescent prefrontal cortex (PFC) development. Here we report that in the apomorphine-susceptible (APO-SUS) rat model, which has schizophrenia-like features, a myelination defect occurred specifically in parvalbumin interneurons. The adult rats displayed medial PFC (mPFC)-dependent cognitive inflexibility, and a reduced number of mature oligodendrocytes and myelinated parvalbumin inhibitory axons in the mPFC. In the developing mPFC, we observed decreased myelin-related gene expression that persisted into adulthood. Environmental enrichment applied during adolescence restored parvalbumin interneuron hypomyelination as well as cognitive inflexibility. Collectively, these findings highlight that impairment of parvalbumin interneuron myelination is related to schizophrenia-relevant cognitive deficits.


Assuntos
Cognição/fisiologia , Interneurônios/patologia , Bainha de Mielina/patologia , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Linhagem da Célula , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica , Interneurônios/ultraestrutura , Aprendizagem , Bainha de Mielina/ultraestrutura , Oligodendroglia/patologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar
15.
Prog Neurobiol ; 187: 101770, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32001310

RESUMO

White matter (WM) plasticity during adulthood is a recently described phenomenon by which experience can shape brain structure. It has been observed in humans using diffusion tensor imaging (DTI) and myelination has been suggested as a possible mechanism. Here, we set out to identify molecular and cellular changes associated with WM plasticity measured by DTI. We combined DTI, immunohistochemistry and mRNA expression analysis and examined the effects of somatosensory experience in adult rats. First, we observed experience-induced DTI differences in WM and in grey matter structure. C-Fos mRNA expression, a marker of cortical activity, in the barrel cortex correlated with the MRI WM metrics, indicating that molecular correlates of cortical activity relate to macroscale measures of WM structure. Analysis of myelin-related genes revealed higher myelin basic protein (MBP) mRNA expression. Higher MBP protein expression was also found via immunohistochemistry in WM. Finally, unbiased RNA sequencing analysis identified 134 differentially expressed genes encoding proteins involved in functions related to cell proliferation and differentiation, regulation of myelination and neuronal activity modulation. In conclusion, macroscale measures of WM plasticity are supported by both molecular and cellular evidence and confirm that myelination is one of the underlying mechanisms.


Assuntos
Encéfalo , Bainha de Mielina , Plasticidade Neuronal/fisiologia , Percepção/fisiologia , Substância Branca , Animais , Imagem de Tensor de Difusão , Expressão Gênica , Masculino , Ratos , Ratos Long-Evans
16.
Mol Neurobiol ; 57(2): 848-859, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31493240

RESUMO

Parkinson's disease (PD) is a highly prevalent neurodegenerative disease for which no disease-modifying treatments are available, mainly because knowledge about its pathogenic mechanism is still incomplete. Recently, a key role for lipids emerged, but lipid profiling of brain samples from human subjects is demanding. Here, we used an unbiased approach, lipidomics, to determine PD-linked changes in the lipid profile of a well-established cell model for PD, the catecholaminergic neuronal cell line SH-SY5Y treated with the neurotoxin 6-hydroxydopamine (6-OHDA). We observed changes in multiple lipid classes, including phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin (SM), and total cholesterol, in 6-OHDA-treated SH-SY5Y cells. Furthermore, we found differences in the length and degree of unsaturation of the fatty acyl chains, indicating changes in their metabolism. Except for the observed decreased PS levels, the alterations in PC, PG, PI, and cholesterol levels are in agreement with the results of previous studies on PD-patient material. Opposite to what has been previously described, the cholesterol-lowering drug statins did not have a protective effect, while low doses of cholesterol supplementation partially protected SH-SY5Y cells from 6-OHDA toxicity. However, cholesterol supplementation triggered neuronal differentiation, which could have confounded the results of cholesterol modulation. Taken together, our results show that 6-OHDA-treated SH-SY5Y cells display many lipid changes also found in PD patient and animal model brains, although the SH-SY5Y cell model seems less suitable to study the involvement of cholesterol in PD initiation and progression.


Assuntos
Lipídeos/análise , Modelos Biológicos , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Humanos , Lipidômica , Sinvastatina/farmacologia
17.
Cells ; 8(9)2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533280

RESUMO

Myelination of neuronal axons is essential for proper brain functioning and requires mature myelinating oligodendrocytes (myOLs). The human OL cell lines HOG and MO3.13 have been widely used as in vitro models to study OL (dys) functioning. Here we applied a number of protocols aimed at differentiating HOG and MO3.13 cells into myOLs. However, none of the differentiation protocols led to increased expression of terminal OL differentiation or myelin-sheath formation markers. Surprisingly, the applied protocols did cause changes in the expression of markers for early OLs, neurons, astrocytes and Schwann cells. Furthermore, we noticed that mRNA expression levels in HOG and MO3.13 cells may be affected by the density of the cultured cells. Finally, HOG and MO3.13 co-cultured with human neuronal SH-SY5Y cells did not show myelin formation under several pro-OL-differentiation and pro-myelinating conditions. Together, our results illustrate the difficulty of inducing maturation of HOG and MO3.13 cells into myOLs, implying that these oligodendrocytic cell lines may not represent an appropriate model to study the (dys)functioning of human (my)OLs and OL-linked disease mechanisms.


Assuntos
Técnicas de Cocultura , Modelos Biológicos , Oligodendroglia/citologia , Diferenciação Celular , Células Cultivadas , Humanos , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
18.
Transl Psychiatry ; 9(1): 84, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30745561

RESUMO

Efavirenz is recommended as a preferred first-line drug for women of childbearing potential living with human immunodeficiency virus. Efavirenz is known for its central nervous system side effects, which are partly mediated by serotonergic actions. The neurotransmitter serotonin exerts neurotrophic effects during neurodevelopment and antenatal exposure to serotonergic agents has been linked to developmental delay. Although the teratogenic risks of efavirenz appear to be minimal, data on long-term developmental effects remain scarce. Here, we aimed to investigate the short- and long-term behavioral and neurodevelopmental effects of perinatal efavirenz exposure. We treated pregnant rats from gestation day 1 until postnatal day 7 with efavirenz (100 mg/kg) or vehicle. We measured behavioral outcomes in male offspring during the first 3 postnatal weeks, adolescence and adulthood, and conducted brain immunohistochemistry analyses after sacrifice. Perinatal efavirenz exposure resulted in reduced body weight and delayed reflex and motor development. During adulthood, we observed a decrease in the total number of cells and mature neurons in the motor cortex, as well as an increase in the number of Caspase-3-positive cells and serotonergic fibers. Together, our data show a developmental delay and persistent changes in the brain motor cortex of rats exposed to efavirenz perinatally. Because over 1 million children born annually are exposed to antiretroviral therapy, our findings underline the need for clinical studies on long-term neurodevelopmental outcomes of perinatal exposure to efavirenz.


Assuntos
Benzoxazinas/farmacologia , Deficiências do Desenvolvimento/induzido quimicamente , Neurônios/citologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Alcinos , Animais , Peso Corporal/efeitos dos fármacos , Ciclopropanos , Feminino , Infecções por HIV/tratamento farmacológico , Masculino , Atividade Motora/efeitos dos fármacos , Córtex Motor/citologia , Córtex Motor/patologia , Neurônios/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Reflexo de Sobressalto , Serotonina/metabolismo
19.
Cells ; 8(1)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621069

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.


Assuntos
Metabolismo dos Lipídeos , Doença de Parkinson/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Masculino
20.
Mol Neurobiol ; 56(2): 1405-1420, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29948943

RESUMO

Proper development of the medial prefrontal cortex (mPFC), crucial for correct cognitive functioning, requires projections from, among others, the serotonergic (5-HT) and catecholaminergic systems, but it is unclear how these systems influence each other during development. Here, we describe the parallel development of the 5-HT and catecholaminergic prefrontal projection systems in rat and demonstrate a close engagement of both systems in the proximity of Cajal-Retzius cells. We further show that in the absence of the 5-HT transporter (5-HTT), not only the developing 5-HT but also the catecholaminergic system, including their projections towards the mPFC, are affected. In addition, the layer identity of the mPFC neurons and reelin-positive interneuron number and integration are altered in the absence of the 5-HTT. Together, our data demonstrate a functional interplay between the developing mPFC 5-HT and catecholaminergic systems, and call for a holistic approach in studying neurotransmitter systems-specific developmental consequences for adult behavior, to eventually allow the design of better treatment strategies for neuropsychiatric disorders.


Assuntos
Córtex Pré-Frontal/metabolismo , Núcleos da Rafe/metabolismo , Serotonina/metabolismo , Transdução de Sinais/fisiologia , Animais , Masculino , Neurônios/metabolismo , Neurônios/patologia , Neurotransmissores/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/patologia , Núcleos da Rafe/patologia , Ratos Wistar , Proteína Reelina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...